Fundamentals Of Physics 11th Edition Loose-leaf Print Companion Volume 2 With Wileyplus Card Set
11th Edition
ISBN: 9781119463252
Author: David Halliday
Publisher: John Wiley and Sons
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 88P
To determine
To find:
The de Broglie wavelength of bullet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the de Broglie wavelength of(a) a bullet of mass 0.040 kg travelling at the speed of 1.0 km/s,(b) a ball of mass 0.060 kg moving at a speed of 1.0 m/s, and(c) a dust particle of mass 1.0 × 10-9 kg drifting with a speed of 2.2 m/s?
(A) Calculate the de Broglie wavelength for an electron (me = 9.11 × 10-31 kg) moving at 1.00 × 107 m/s.
(a) What is the de Broglie wavelength (in m) of a proton moving at a speed of 3.30 × 104 m/s?
m
(b) What is the de Broglie wavelength (in m) of a proton moving at a speed of 1.92 × 108 m/s?
m
m
(c) What is the de Broglie wavelength for an electron having a kinetic energy of 3.15 MeV?
Chapter 38 Solutions
Fundamentals Of Physics 11th Edition Loose-leaf Print Companion Volume 2 With Wileyplus Card Set
Ch. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Prob. 5QCh. 38 - Prob. 6QCh. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10Q
Ch. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76PCh. 38 - Prob. 77PCh. 38 - Prob. 78PCh. 38 - Prob. 79PCh. 38 - Prob. 80PCh. 38 - Prob. 81PCh. 38 - Prob. 82PCh. 38 - Prob. 83PCh. 38 - Prob. 84PCh. 38 - Prob. 85PCh. 38 - Prob. 86PCh. 38 - Prob. 87PCh. 38 - Prob. 88PCh. 38 - Prob. 89PCh. 38 - Prob. 90P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the de Brogue wavelength of an electron that is accelerated from rest through a potential difference of 20 keV?arrow_forwardWhat is the de Brogue wavelength of an electron travelling at a speed of 5.0106 m/s ?arrow_forward(a) What is the de Broglie wavelength (in m) of a proton moving at a speed of 3.30 × 104 m/s? 1.2E-11 m (b) What is the de Broglie wavelength (in m) of a proton moving at a speed of 1.92 × 108 m/s? Note that the proton is moving very close to the speed of light in this case. Therefore, we cannot use the non-relativistic approximation for momentum. What is the relativistic relationship between momentum and speed? What is the gamma factor? m (c) What is the de Broglie wavelength for an electron having a kinetic energy of 3.15 MeV? X Your response differs from the correct answer by more than 10%. Double check your calculations. marrow_forward
- Calculate the de Broglie wavelength of (a) an oxygen (O2) molecule darting around the room at 480 m/s and (b) an Escherichia coli bacterium of mass 6.5x10-13 kg, which has been measured to move at a speed of 1.0 x 10-5 m/s.arrow_forwardWhat is the de Broglie wavelength associated with (a) an electron moving with a speed of 5.4×106 m/s, and (b) a ball of mass 150 g travelling at 30.0 m/s?arrow_forwardOn average, people in Adelaide have a mass of m would have a de Broglie wavelength of A N 3.66 x 10 36 85.5 kg and walk at a speed of v = 2.12 ms, If we were to consider such a person to be a particle with mass m and speed v, then they m when walking. Explain why the average Adelaidean is not observed to diffract when walking through a doorway.arrow_forward
- What is the de Brogile wave length of a 0.001 kg marble moving at a speed of 3.00 m/s? (H=6.626 x 10^-34 J •s)arrow_forwardCalculate the velocities of electrons with de Broglie wavelengths of 1.7×103 nm and 5.0 nm, respectively.arrow_forward(dB-1) The mass of a proton is 1.67x10-27 kg and the mass of an electron is 9.11×10-31 kg. A typical car has a mass of ~1000 kg. (a) Find the de Broglie wavelength (in nm) of a proton with a kinetic energy of 2.50 eV. (b) Find the de Broglie wavelength (in nm) of a 2.50 eV electron. (c) Estimate the de Broglie wavelength of a car driving down the highway. You can round to the nearest oder of magnitude. (d) In general, what can we conclude about the de Broglie wavelengths of macroscopic objects? Are the wave qualities of macroscopic objects noticeable?arrow_forward
- An electron is in a box of width 3.0 * 10-10 m. What are the de Broglie wavelength and the magnitude of the momentum of the electron if it is in the n = 2 level.arrow_forwardA free electron moving along the x-direction (one for which V(x) = 0) would have a wave function of the form f(x) = A eikx + B e−ikx where A and B are constants. (a) If the wavelength of this wave function (in radians) equals the de Broglie wavelength of the electron, and its velocity, v = 8.40 × 10² m/sec, what is the value of k (in nm¯¹)? Express your answer in scientific notation with three significant figures. (b) The Hamiltonian operator for a free electron is given by p² ħ² d² Ĥ 2me 2me dx² The wave function provided at the top is an eigenstate of Â. If one measures the energy for an electron in this state using Â, what would be the result, and how does it compare to the classical kinetic energy of a free electron with this velocity?arrow_forwardHow fast must a nonrelativistic electron move so its de Broglie wavelength is the same as the wavelength of a 7.7 eV photon?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning