Fundamentals Of Physics 11th Edition Loose-leaf Print Companion Volume 2 With Wileyplus Card Set
11th Edition
ISBN: 9781119463252
Author: David Halliday
Publisher: John Wiley and Sons
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 46P
To determine
To find:
a) De Broglie wavelength of
b) De Broglie wavelength of
c) De Broglie wavelength of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Z2
Calculate the de Broglie wavelength of (a) a 1.00 keV electron, (b) a 1.00 keV photon, and (c) a 1.00 keV neutron.
What is the de Broglie wavelength for an electron with speed (a) v = 0.480c and (b) v = 0.960c?
Chapter 38 Solutions
Fundamentals Of Physics 11th Edition Loose-leaf Print Companion Volume 2 With Wileyplus Card Set
Ch. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Prob. 5QCh. 38 - Prob. 6QCh. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10Q
Ch. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76PCh. 38 - Prob. 77PCh. 38 - Prob. 78PCh. 38 - Prob. 79PCh. 38 - Prob. 80PCh. 38 - Prob. 81PCh. 38 - Prob. 82PCh. 38 - Prob. 83PCh. 38 - Prob. 84PCh. 38 - Prob. 85PCh. 38 - Prob. 86PCh. 38 - Prob. 87PCh. 38 - Prob. 88PCh. 38 - Prob. 89PCh. 38 - Prob. 90P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the de Broglie wavelength of a proton whose kinetic energy is 2.0 MeV? 10.0 MeV?arrow_forwardWhat is the de Broglie wavelength of(a) a bullet of mass 0.040 kg travelling at the speed of 1.0 km/s,(b) a ball of mass 0.060 kg moving at a speed of 1.0 m/s, and(c) a dust particle of mass 1.0 × 10-9 kg drifting with a speed of 2.2 m/s?arrow_forwardWhat is the de Brogile wave length of a 0.001 kg marble moving at a speed of 3.00 m/s? (H=6.626 x 10^-34 J •s)arrow_forward
- What is the de Broglie wavelength for an electron with speed (a) v = 0.469c and (b) v = 0.958c? (Hint: Use the correct relativistic expression for linear momentum if necessary.)arrow_forwardA neutron of mass 1.675 × 10-27 kg has a de Broglie wavelength of 7.8x10-12 m. What is the kinetic energy (in eV) of this non-relativistic neutron? Please give your answer with two decimal places. 1 eV = 1.60 × 10-19 J, h = 6.626 × 10-34 J ∙ s.arrow_forwardA) Calculate the de Broglie wavelength of a neutron (mn = 1.67493×10-27 kg) moving at one six hundredth of the speed of light (c/600). (Enter at least 4 significant figures.) B) Calculate the velocity of an electron (me = 9.10939×10-31 kg) having a de Broglie wavelength of 230.1 pm.arrow_forward
- | 1+ 19. An electron (mass m) with initial velocity i = voi + voj is in an electric field É = -E,k. If 1o is initial de-Broglie wavelength of electron, its de-Broglie wavelength at time t is given by do a. A = 1+ m2 t? b. A= 1+ t2 m²u λο c. A = 1+ t2 2m² v do d. A = 2+arrow_forward(A) Calculate the de Broglie wavelength for an electron (me = 9.11 × 10-31 kg) moving at 1.00 × 107 m/s.arrow_forwardA) Calculate the de Broglie wavelength of a neutron (mn = 1.67493×10-27 kg) moving at one six hundredth of the speed of light (c/600). Enter at least 4 significant figures. (I got the answer 949.4 pm but it is wrong, please help) B) Calculate the velocity of an electron (me = 9.10939×10-31 kg) having a de Broglie wavelength of 230.1 pm.arrow_forward
- (a) What is the de Broglie wavelength (in m) of a proton moving at a speed of 3.30 × 104 m/s? m (b) What is the de Broglie wavelength (in m) of a proton moving at a speed of 1.92 × 108 m/s? m m (c) What is the de Broglie wavelength for an electron having a kinetic energy of 3.15 MeV?arrow_forwardStarting from rest, an electron accelerates through a potential difference of 49 V. What is its de Broglie wavelength? ( h = 6.63 × 10 −34 J ⋅s, m e = 9.11 × 10 −31 kg, and 1 eV = 1.60 × 10 −19 J)arrow_forwardAn electron has a de Broglie wavelength λ = 4.5×10−10 m .h=6.626×10−34 J⋅s, e=1.602×10−19 C, me=9.109×10−31 kg. What is its momentum?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax