Fundamentals Of Physics 11th Edition Loose-leaf Print Companion Volume 2 With Wileyplus Card Set
11th Edition
ISBN: 9781119463252
Author: David Halliday
Publisher: John Wiley and Sons
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 73P
To determine
To find:
The current on the other side of the step boundary.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A stream of electrons with a linear number density of 3.10 x 1011 electrons/meter are accelerated from rest
by a 62.0-V potential difference applied across two parallel plates. The electrons then pass through an
aperture in the high voltage plate and into a current collector where the beam current is measured.
Note: The mass of an electron is 9.11 x 10-31 kg.
(a) What is the magnitude of the electric field between the plates if they are 2.07 m apart?
V/m
(b) What is the final velocity of each electron?
m/s
(c) What is the beam current?
A
The current of a beam of electrons, each with a speed of 900 m/s, is 5.00 mA. At one point along its path, the beam encounters a potential step of height -1.25 mV.What is the current on the other side of the step boundary?
In Millikan's oil-drop experiment, one looks at a small oil drop held motionless between two plates. Take the voltage between the plates to be 2370 V, and the plate separation to be 2.33 cm. The oil drop (of density 0.810 g/cm3) has a diameter of 4.35 ✕ 10−6 m. Find the charge (in C) on the drop.
Chapter 38 Solutions
Fundamentals Of Physics 11th Edition Loose-leaf Print Companion Volume 2 With Wileyplus Card Set
Ch. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Prob. 5QCh. 38 - Prob. 6QCh. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10Q
Ch. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76PCh. 38 - Prob. 77PCh. 38 - Prob. 78PCh. 38 - Prob. 79PCh. 38 - Prob. 80PCh. 38 - Prob. 81PCh. 38 - Prob. 82PCh. 38 - Prob. 83PCh. 38 - Prob. 84PCh. 38 - Prob. 85PCh. 38 - Prob. 86PCh. 38 - Prob. 87PCh. 38 - Prob. 88PCh. 38 - Prob. 89PCh. 38 - Prob. 90P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Millikan's oil-drop experiment, one looks at a small oil drop held motionless between two plates. Take the voltage between the plates to be 2340 V, and the plate separation to be 2.30 cm. The oil drop (of density 0.810 g/cm?) has a diameter of 4.15 x 10- m. Find the charge (in C) on the drop.arrow_forwardEmarrow_forwardEM2arrow_forward
- P ○ 35° Electron O9.18 x 10¹⁹ T. out of the page 1.53 x 10-3 T, out of the page 1.60 x 10-8 T, into the page 2.18 x 10-3 T, out of the page 1.31 x 10-8 T, into the page 1.53 x 10-3 T, into the page 9.18 x 109 T, into the page 2.18 x 10-³ T, into the page 1.60 x 10-8 T, out of the page ○ 1.31 x 10-8 T, out of the page X An electron moves at 3.60 x 10 m/s as shown in the figure. Find the magnitude and direction of the magnetic field this electron produces at point P which is 6.00 um away from the electron. (e = 1.60 x 10 19 c)arrow_forwardle (mA) 50 mW/cm2 TU40 mW/cm² 30 mW/cm² (a) Zero (b) 10 mW/cm² (c) 20 mW/cm² (d) 30 mW/cm² 20 mW/cm² 10 mW/cm2 Dark current V₁: (V) Figure 3 A phototransistor with the characteristic shown in Figure 3 has a supply voltage of 20 V and a collector load resistance of 2.5 Kn. Determine the output voltage when the illumination level isarrow_forwardFree electrons ejected from a filament by thermionic emission is accelerated by 5.4 kV of electrical potential difference. What is the kinetic energy of each electron after the acceleration in the unit of eV?arrow_forward
- Electrons, thermionically emitted from a cathode in a vacuum valve, travel across a potential difference of 1000V to the anode. What is the velocity of the electrons as a fraction of the velocity of light, c, when they reach the anode? Select one: а. 0.004c b. 0.13c С. 0.063c d. 0.02carrow_forwardA 52@mC charged particle moves parallel to a long wire with a speed of 720 m>s. The separation between the particle andthe wire is 13 cm, and the magnitude of the force exerted on the particle is 1.4 * 10-7N. Find (a) the magnitude of themagnetic field at the location of the particle and (b) the current in the wire.arrow_forwardIn an isolated conducting wire, although conduction electrons are available, there will be no current. Why? (b) A 6.0-MeV beam of protons has a density of 2.6 × 1011 m-3 and an area of 1.9 mm2 . What is the beam current? (proton mass = 1.67× 10-27 kg)arrow_forward
- In a certain region of space there are electrons moving randomly. In any 1 µs time interval, the probability of finding an electron in a subregion of volume V=10-15 m³ is 0.27. What volumetric charge density should be assigned to that sub-region for that interval?arrow_forwardYou measure the initial mass of the cathode to be 25.05 ± 0.10 g, and the final mass to be 24.12 ±0.05g. If a current of 0.45±0.05A flowed for 100±0.5 min, what do you calculate for a value of e? (M=63.54g/mol, NA-6.022x1023 atoms/mol) x10-¹⁹ Carrow_forwardIn the Millikan oil drop experiment tiny charged oil droplets generated by a spray are allowed to fall under gravity through a hole in a top electrode, T, towards a bottom electrode B separated from T by 1 cm. When a holding voltage Vh = +0.25V is applied between T and B the droplets are seen to be suspended motionless between the electrodes. What is the specific charge of the droplet q/m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning