EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 43P
To determine
The temperature of the electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume that a GaAs semiconductor has a lattice
constant a=7.5 Á, and the atoms of Ga and As are
hard spheres.
Assume an electric field of E=1000 V/m is applied
on the GaAs semiconductor at T = 300 K. The drift
%3D
current ?
The conductivity of a semiconductor is 250 S/m at 20 °C and
1100 S/m at 100 °C. Prove that the band gap of this semiconductor is
0.263 eV.
Pls asap
Chapter 38 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10P
Ch. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76P
Knowledge Booster
Similar questions
- In a certain semiconductor, the valence band can be approximated by the function E(k) = Eo ak² and the conduction band can be described by the function E(k)= E₁ + 3k². Here E(k) is the electron energy and k is the wavevector. Plot E(k) for the two bands. What is the bandgap of this semiconductor? Is this a direct or indirect bandgap semiconductor?arrow_forwardThe electron number density in a semiconductor varies from 1020 m³ to 10¹2 m³ linearly over a distance of 4 µm. Determine the electron diffusion current and electric field at the midpoint if no current flows, He = 0.135 m²V-¹s¹ and T = 300 K.arrow_forwardSuppose a pure Si crystal has 5 × 1028 atoms m-3. It is doped by 1 ppm concentration of pentavalent As. Calculate the number of electrons and holes. Given that ni =1.5 × 1016 m-3.arrow_forward
- JA silicon wafer is doped with 1015 cm 3 donor atoms. Assume light generates density of electrons and holes equal to 1018 cm-3.Calculate the total electron and hole concentrations and location of the quasi-Fermi levels for the electrons and holes with respect to the intrinsic Fermi level. (n = 1x1010 cm-3, Ne = 2.8x1019 cm-3, Ny = 1.04x1019 cm3, T = 300K). %3Darrow_forwardThe energy gaps Eg for the semiconductors silicon and germanium are, respectively, 1.12 and 0.67 eV. Which of the following statements, if any, are true? (a) Both substances have the same number density of charge carriers at room temperature. (b) At room temperature, germanium has a greater number density of charge carriers than silicon. (c) Both substances have a greater number density of conduction electrons than holes. (d) For each substance, the number density of electrons equals that of holes.arrow_forwardWhat is the minimum saturation voltage of a power transistor having βR = 0.05 and operating at a junction temperature of 150◦C?arrow_forward
- An intrinsic semiconductor has n=2x1016/m was doped with 1018 /m acceptor impurities. If the mobility of the electrons is 0.13m²/y.s and the mobility of holes is 0.04m/y.s, determine the conductivity, and what is the percentage ratio of the electrons and holes conductivity?arrow_forwardIn an N-type semiconductor at T = 300 K, the electron concentration varies linearly from 2 x 10^18 to 5 X 10^17 per cc over a distance of 1.5 mm and the diffusion current density is 360 A/cm^2. Find the mobility of electrons.arrow_forwardDetermine the thermal equilibrium electron and hole concentrations in a compensated n- type semiconductor. Consider a silicon semiconductor at T = 300°K in which Na = 1016 cm³ and Na = 3 x 1015 cm. Assume that n; =1.5 x 1010 cm3.arrow_forward
- Silicon is doped with phosphorus atoms (column V of Mendeleev table) with a concentration of 1018 cm-3 a- What is, at 27 °C, the electron density in doped Si. Use this result to derive the hole density. Which type of semiconductor is obtained? b- Calculate, at 27 °C, the position of the Fermi level EF and plot the band diagram.arrow_forwardB/ A new semiconductor material is to be n-type and doped with 6x10¹ cm³ donor atoms. Assume complete ionization and assume N,= 0. The effective density of states functions are N, =1.&r 10¹ cm and N,= 1.2x10 cm³ at 7-300 K. A special semiconductor device fabricated with this material requires that the electron concentration be no greater than 6.08x10¹ cm³ at 7= 400 K. What is the minimum band gap energy required in this new material?arrow_forwardASAParrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning