(a)
The free-electron density in gold.
(a)
Answer to Problem 31P
The free-electron density in goldis
Explanation of Solution
Given:
The density of gold is
The
Formula used:
The expression for free-electron density is given by
Here,
Calculation:
The free electron density of goldis calculated as,
Conclusion:
Therefore, the free electron density in gold is
(b)
The Fermi energy for gold.
(b)
Answer to Problem 31P
The Fermi energy for goldis
Explanation of Solution
Given:
The Fermi speed for goldis
Formula used:
The expression for Fermi energy is given by,
Here,
Calculation:
The Fermi energy for gold is calculated as,
Conclusion:
Therefore, the Fermi energy for gold is
(c)
The factor between Fermi energy and
(c)
Answer to Problem 31P
The factor between Fermi energy and
Explanation of Solution
Given:
The
Formula used:
The expression for required factor is given by,
Calculation:
The required factor is calculated as,
Conclusion:
Therefore, the factor by between Fermi energy and
(d)
The difference between Fermi energy and
(d)
Explanation of Solution
Introduction:
The difference between higher and lower energy level that is occupied by the charged particle of material at
At absolute zero, the energy available at conduction electron in a higher energy state is termed as Fermi energy. It is higher than or equal to
When the electron does not obey the exclusion principle, the energy of average conduction electrons at any temperature
Conclusion:
Therefore, the Fermi energy is always greater than or equal to
Want to see more full solutions like this?
Chapter 38 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning