EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 42P
(a)
To determine
The energy gap between the bands in Lead Sulfide.
(b)
To determine
The temperature of the electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The maximum wavelength of light that a certain silicon photocell can detect is 1.11 mm.
(a) What is the energy gap (in electron volts) between the valence and conduction bands for this photocell?
(b) Explain why pure silicon is opaque.
Suppose a pure Si crystal has 5 × 1028 atoms m-3. It is doped by 1 ppm concentration of pentavalent As. Calculate the number of electrons and holes. Given that ni =1.5 × 1016 m-3.
Calculatea) the drift mobility b) the mean scattering time
Chapter 38 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10P
Ch. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76P
Knowledge Booster
Similar questions
- Germanium doped with 1024 m Al atoms is a semi-conductor at room temperature and each Al atom creates a charge carrier. Calculate the electrical conductivity of this material at room temperature, considering that the electron and hole mobilities are respectively 0.1 and 0.05 m/V.s.arrow_forward(a) What maximum light wavelength will excite an electron in the valence band of diamond to the conduction band? The energy gap is 5.50 eV. (b) In what part of the electromagnetic spectrum does this wavelength lie?arrow_forward6arrow_forward
- The effective density of states of a piece of silicon is Nc = 2x1319 cm³ in the conduction band at room temperature. Assume the intrinsic concentration, ni, is 1010 cm3. Suppose 0.1% of the equivalent density of states in the conduction band are filled with electrons at room temperature. (a) What is the doping concentration in the silicon? (b) What is the electron concentration in the silicon? (c) What is the hole concentration in the silicon? (d) What is the value of the Fermi-Dirac function f(E) at the conduction band edge?arrow_forwardPls asaparrow_forwardNeeds Complete solution with 100 % accuracy.arrow_forward
- Electron drift mobility in indium (In) has been measured to be 6 cm2/Vs. Based on the resistivity value, determine how many free electrons are donated by each In atom in the crystal? (The room temperature (27 °C) resistivity of In is 8.37 × 10-8 Ω.m, and its atomic mass and densityare 114.82 g/mol and 7.31 g/cm3 )arrow_forwardThe intrinsic carrier concentration of silicon (Si) is expressed as - E n₁=5.2×10¹5T¹.5exp- i electrons at 30°C. n = cm -3 g 2kT cm -3 where Eg = 1.12 eV. Determine the density of Round your answer to 0 decimal places.arrow_forwardBetween germanium and zinc sulfide, which material would be useful for use as an optical detection device (eg. photodiode) in the near infrared at room temp? Note: Both Ge and ZnS are considered semiconductor materials, but their energy band gaps are quite different. More Info: Eg for Ge ( T = 300K) = 0.66 eV, and Eg for ZnS ( T = 300K) = 3.6 eV.arrow_forward
- If the total energy between atoms is Uy = A exp(-R/p) then, the term that represents the repulsive energy is a. R b. л еxp(-R/p) c. none d. A еxp(-Rip) - Rarrow_forwardJA silicon wafer is doped with 1015 cm 3 donor atoms. Assume light generates density of electrons and holes equal to 1018 cm-3.Calculate the total electron and hole concentrations and location of the quasi-Fermi levels for the electrons and holes with respect to the intrinsic Fermi level. (n = 1x1010 cm-3, Ne = 2.8x1019 cm-3, Ny = 1.04x1019 cm3, T = 300K). %3Darrow_forwardThe gap between valence and conduction bands in diamond is 5.47 eV.What is the maximum wavelength of a photon that can excite an electron from the top of the valence band into the conduction band? In what region of the electromagnetic spectrum does this photon lie?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill