EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 26P
(a)
To determine
The Fermi temperature for
(b)
To determine
The Fermi temperature for
(c)
To determine
The Fermi temperature for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the Fermi temperatures TF for Cu,Na and Ag. Also calculate the ratio T/TF in each case for T=300oK. The effective masses of Cu and Na are 1.0 and 1.2 times m0?
An atom’s nucleus is a collection of fermions— protons and neutrons.
(a) In calculating the Fermi energy in a nucleus, the protons and neutrons must be considered separately. Why?
(b) Find the Fermi energy of (i) the protons and (ii) the neutrons in a uranium nucleus, which has a radius of 7.4 x 10-15 m and contains 92 protons and 146 neutrons.
O:22)
Use fermi approximation to determine the number of softballs that can fit in a 1 meter cube. Calculate the free space in a 1 meter cube box that is filled with softballs.
State all assumptions.
Chapter 38 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10P
Ch. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76P
Knowledge Booster
Similar questions
- H.w// The energy rate is given at T> 0K with the following: 1 {e) N e f(e)g(e)de And compensate for Fermi and density function e3/2 de V (e) = 2m 3/2 h2 e(e-EF)/kT +1 Solve the integration and extend output to be output in the following image: [3 (e) = €f(0) n2 (T 4arrow_forwardcalculate the fermi temperature for element X. where its fermi energy is 4.69 evarrow_forwardAt a certain temperature, the electron and hole mobilities in intrinsic germanium are given as 0.43 and 0.21 m2/V s, respectively. If the electron and hole concentrations are both 2.3 x 10'® m, find the conductivity at this temperature.arrow_forward
- Silicon atoms with a concentration of 7x 1010 cm are added to gallium arsenide GaAs at T = 400 K. Assume that the silicon atoms act as fully ionized dopant atoms and that 15% of the concentration added replaces gallium atoms to free electrons and 85% replaces arsenic to create holes. Use the following parameters for GaAs at T = 300 K: N. = 4.7 x 1017cm-3 and N, = 7 x 1018 cm-3. The bandgap is E, = 1.42 eV and it is constant over the temperature range. The intrinsic concentration?arrow_forwardPlot the Fermi function Vs. Energy at the temperature of 500 K, when EF = 2 eVarrow_forwardSilicon atoms with a concentration of 7x 1010 cm3 are added to gallium arsenide GaAs at T = 400 K. Assume that the silicon atoms act as fully ionized dopant atoms and that 15% of the concentration added replaces gallium atoms to free electrons and 85% replaces arsenic to create holes. Use the following parameters for GaAs at T = 300 K: N. = 4.7 x 1017 cm-3 and N, = 7 x 101cm-3. The bandgap is E, = 1.42 eV and it is constant over the temperature range. The donor concentration?arrow_forward
- Find a GaAs Hall element from web (specify Ic and VH).arrow_forwardSolve for the Fermi temperature OF(K), effective mass ratio m* /me and electron concentration no for the Lithium element. Element Li Fermi energy EF (eV) 4.7 Fermi velocity VF (108 cm/s) 1.3 Fermi temperature OF (K) effective mass ratio m/me ~1 electron concentration = N nf = (10¹⁹ cm-³) Varrow_forwardCalculate the drift current density in a gallium arsenide sample at T = 300 K, with doping concentration of Na = 0 and Na = 1021/m³. If u, = 0.85 m2/V.s, 4, 0.04 m2/V.s, E = 15 V/cm, and n, = 2.2 x 1017/m2.arrow_forward
- The 2DEG in (iii) is patterned to produce a clean, quasi-1D channel. The current I through the channel is = Nev, where N = the number of electrons, e the electronic charge and = the electrons' group velocity. The number of electrons N(ɛ) = f(ɛ, µ)g(ɛ), where f (ɛ, u) =Fermi-Dirac distribution = 1 and g(ɛ) density of states = dn/dɛ. 1+exp() kBT (a). Write down the dispersion relation for free electrons of mass m. What is their group velocity v? (b). Find an expression for g(ɛ) involving the group velocity. Leave your answer in terms of v.arrow_forward11.1 Give numerical estimates for the Fermi energy of (a) electrons in a typical metal; (b) nucleons in a heavy nucleus; (c) He' atoms in liquid He' (atomic volume particles as free particles. 46.2 Å /atom). Treat all the mentioned %3Darrow_forwardConsider spherical nanoparticles of copper with diameters of 10 and 100 nm. A) Calculate the total number of atoms in the particles,considering the lattice parameter of bulk Cu. B) Calculate the number of atoms at the grain boundaries for a typical grain boundary thickness of 1nm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning