EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 39P
To determine
The maximum photon wavelength that will excite the electron across the energy gap.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A semiconducting crystal 12mm long, 5mm wide and 1mm thick has a magnetic flux density of 0.5Wb/m2 applied from front to back perpendicular to largest faces. When a current of 20mA flows length wise through the specimen, the voltage measured across its width is found to be 37μV. What is the Hall coefficient of this semiconductor?
Calculate the drift current in silicon at room temperature. If the intrinsic
carrier concentration of (1x1016electron/m?) with the doping concentration of
(2x1016atoms/m³) of the phosphorus and (1×1016atoms/m³) of Boron.
Given the mobility for the electrons (0.15m2/V.s), the mobility for the holes
(0.05m2/V.s), the electric field (100V/m), and the cross section area is 1mm?.
The intrinsic carrier concentration of silicon (Si) is expressed as
- E
n₁=5.2×10¹5T¹.5exp-
i
electrons at 30°C.
n =
cm
-3
g
2kT
cm
-3
where Eg = 1.12 eV. Determine the density of
Round your answer to 0 decimal places.
Chapter 38 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10P
Ch. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76P
Knowledge Booster
Similar questions
- We have a piece of Si (shown below) with dimensions 50 um x 200 um x 0.25 um. The Silicon is doped uniformly with ND = 1014 cm3. What is the resistance of the slab when measured along the length (200 um)? %3| If a light with photonic energy greater than the bandgap of Si were to be shone from the top surface such that it produces uniform hole-electron pairs Ap =An = 5E12 cm-3 throughout the slab, what would be the ratio of the illuminated conductivity vs the dark conductivity? What is the ratio of conductivity due to holes vs the conductivity due to electrons under illumination? How about in the dark? 200 Nmarrow_forwardIn a Si semiconductor sample of 200 am length at 600 K the hole concentration as a' function of the sample length follows a quadratic relation of the form p (x) = 1 x1015x, at equilibrium the value of the electric field at 160 jum will be: O 1.935 V/cm O 3.250 V/cm O 5805 V/cm O 55.56 V/cm O 6.450 V/cmarrow_forwardM7arrow_forward
- An abrupt silicon pn junction at zero bias has dopant concentrations of Nd = 5 X 1017 cm 3 and N₂ = 1 X 1017 cm-3 at T = a 300K. Determine the peak electric field for this junction for a reverse voltage of 5 V. Emax = O Emax O Emax 3.88 X 105 V/cm Emax 3.21 X 105 V/cm Emax = 1.70 X 105 V/cm 1.35 X 105 V/cm =arrow_forwardAn SiO2 layer is formed on top of pure silicon. The Auger peak of silicon is at 91 eV. After oxidation, it is shifted to 78 eV. Therefore, pure and oxidized silicon are easily distinguishable. When the surface is oxidized, the silicon 91 eV peak intensity decreases because of attenuation by the silicon dioxide layer. After an SiO2 layer of thickness t is formed, the 91 eV Auger peak drops to 15% of its clean surface value. The angle of electron collection is 45o from the surface normal. If the mean free path is 0.5 nm for 91 eV electrons in silicon dioxide, what is the thickness t of the oxide coatingarrow_forwardThe energy gap of an element is given as 5.9x10 eV. Calculate the intrinsic coherent length if V, =5.82×10 m/s. (a) 5.9 µm (b) 1.2 m (c) 9.5 m (d) 2.1 umarrow_forward
- A sample of N-type silicon is at the room temperature. When an electric fi eld with strength of 1000 Vlcm is applied to the sample. the hole velocity is measured and found to be 2 x 105 cm/sec.arrow_forwardThe maximum wavelength of light that a certain silicon photocell can detect is 1.11 mm. (a) What is the energy gap (in electron volts) between the valence and conduction bands for this photocell? (b) Explain why pure silicon is opaque.arrow_forwardK: Estimate the ratio of the electron densities in the conduction bands of silicon (Eg 1.14 eV) and gallium arsenide (Eg = 1.42 eV) at 400 K.arrow_forward
- A Hall probe made from a semiconductor in the form of a cube of side 1 mm is being designed to measure a magnetic field. If the carrier concentration is 5x1017/cm and the operation current density for the probe is 10 mA/cm². find the probe sensitivity in unit V/T. Assume a mobility of 0.5 m2/Vs.arrow_forwardThe gap between valence and conduction bands in diamond is 5.47 eV.What is the maximum wavelength of a photon that can excite an electron from the top of the valence band into the conduction band? In what region of the electromagnetic spectrum does this photon lie?arrow_forwardUsing linear interpolation method, identify the indium content of in,Ga 1 As which has a bandgap corresponding to the photon wavelength of 3 um. Band gaps of InAs and GaAs are 0.354 and 1.422 eV's, respectively. Lütfen birini seçin: 53% 58% 49% 94%arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning