Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.8, Problem 122RP
A tank whose volume is unknown is divided into two parts by a partition. One side of the tank contains 0.03 m3 of refrigerant-134a that is a saturated liquid at 0.9 MPa, while the other side is evacuated. The partition is now removed, and the refrigerant fills the entire tank. If the final state of the refrigerant is 20°C and 280 kPa, determine the volume of the tank.
FIGURE P3–124
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
3. A piston is resting on stops in a frictionless piston-cylinder device. The system contains water
with a mass of 1 kg. The initial temperature is 30°C and the initial volume is 0.1 m³. The pressure
required to raise the piston is 100 kPa. Find the work done if we add heat until the water is
completely vapor (x=1). Find the heat added to the system. Draw and label the process on P-v
and T-v diagrams.
4. A frictionless piston-cylinder device contains 10 kg of water initially at 100 kPa and 100°C. If the
volume reaches 20 m³, the piston hits a set of stops and is restrained from further upward
travel. Heat is added until the temperature is 200°C. Calculate the pressure at this point. Also,
calculate the temperature when the piston first touches, but exerts no force, on the stops. Draw
and label the process on P-v and T-v diagrams.
2. A vertical piston-cylinder device contains water and is being heated on top of a range. During the process, 65 Btu of heat is transferred to the water, and heat losses from the side walls amount to 8 Btu. The piston rises as a result of evaporation, and 5 Btu of work is done by the vapor. Determine the change in the energy of the water for this process. draw a figure also, and explain each step by step solution.
1) A piston-cylinder assembly contains 10 kg of refrigerant 134a. Initially, 8 kg of SA134a is in the liquid phase and the temperature is -10°C. Then there is a slow heat transfer to SA-134a, the piston rises and the piston touches the stoppers when the volume is 400 liters.
(a) Show the phase change in the P-V diagram,
(b) the temperature of the system at the moment the piston contacts the stoppers,
(c) calculate the work done during the process.
Chapter 3 Solutions
Thermodynamics: An Engineering Approach
Ch. 3.8 - Is iced water a pure substance? Why?Ch. 3.8 - What is the difference between saturated vapor and...Ch. 3.8 - 3–3C Is there any difference between the...Ch. 3.8 - 3–4C Why are the temperature and pressure...Ch. 3.8 - Is it true that water boils at higher temperature...Ch. 3.8 - What is the difference between the critical point...Ch. 3.8 -
3–7C Is it possible to have water vapor at ?
Ch. 3.8 - A househusband is cooking beef stew for his family...Ch. 3.8 - In what kind of pot will a given volume of water...Ch. 3.8 - It is well known that warm air in a cooler...
Ch. 3.8 - Does the amount of heat absorbed as 1 kg of...Ch. 3.8 - Does the reference point selected for the...Ch. 3.8 - What is the physical significance of hfg? Can it...Ch. 3.8 - Does hfg change with pressure? How?Ch. 3.8 - Is it true that it takes more energy to vaporize 1...Ch. 3.8 - What is quality? Does it have any meaning in the...Ch. 3.8 - Which process requires more energy: completely...Ch. 3.8 - In the absence of compressed liquid tables, how is...Ch. 3.8 - Prob. 19PCh. 3.8 - Complete this table for H2O:Ch. 3.8 - Prob. 21PCh. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Prob. 26PCh. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - A 1.8-m3 rigid tank contains steam at 220C....Ch. 3.8 - A pistoncylinder device contains 0.85 kg of...Ch. 3.8 - Prob. 30PCh. 3.8 -
3–31 10-kg of R-134a fill a 1.348-m3 rigid...Ch. 3.8 - Prob. 32PCh. 3.8 - Refrigerant-134a at 200 kPa and 25C flows through...Ch. 3.8 - Prob. 34PCh. 3.8 - The temperature in a pressure cooker during...Ch. 3.8 - Prob. 36PCh. 3.8 -
3–37E One pound-mass of water fills a 2.4264-ft3...Ch. 3.8 - Prob. 38PCh. 3.8 - Water is to be boiled at sea level in a...Ch. 3.8 - Repeat Prob. 340 for a location at an elevation of...Ch. 3.8 - 10 kg of R-134a at 300 kPa fills a rigid container...Ch. 3.8 - 100 kg of R-134a at 200 kPa are contained in a...Ch. 3.8 - Water initially at 200 kPa and 300C is contained...Ch. 3.8 -
3–44 Saturated steam coming off the turbine of a...Ch. 3.8 - Prob. 45PCh. 3.8 - Prob. 46PCh. 3.8 - Water is being heated in a vertical pistoncylinder...Ch. 3.8 - Prob. 49PCh. 3.8 - A rigid tank with a volume of 1.8 m3 contains 40...Ch. 3.8 - A pistoncylinder device contains 0.005 m3 of...Ch. 3.8 -
3–53E A 5-ft3 rigid tank contains 5 lbm of water...Ch. 3.8 - A 5-ft3 rigid tank contains a saturated mixture of...Ch. 3.8 - Superheated water vapor at 180 psia and 500F is...Ch. 3.8 - Prob. 57PCh. 3.8 - 3–58 A rigid tank contains water vapor at 250°C...Ch. 3.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 3.8 - How much error would one expect in determining the...Ch. 3.8 - Prob. 61PCh. 3.8 -
3–62 A rigid vessel contains 8 kg of...Ch. 3.8 - A rigid tank initially contains 1.4 kg saturated...Ch. 3.8 - A pistoncylinder device initially contains 50 L of...Ch. 3.8 - Under what conditions is the ideal-gas assumption...Ch. 3.8 - Prob. 66PCh. 3.8 - Propane and methane are commonly used for heating...Ch. 3.8 - A 400-L rigid tank contains 5 kg of air at 25C....Ch. 3.8 - Prob. 69PCh. 3.8 - Prob. 70PCh. 3.8 - The pressure gage on a 2.5-m3 oxygen tank reads...Ch. 3.8 - A spherical balloon with a diameter of 9 m is...Ch. 3.8 - Reconsider Prob. 373. Using appropriate software,...Ch. 3.8 - Prob. 74PCh. 3.8 - Prob. 75PCh. 3.8 - A rigid tank whose volume is unknown is divided...Ch. 3.8 - Prob. 77PCh. 3.8 - Prob. 78PCh. 3.8 - Prob. 79PCh. 3.8 - Prob. 80PCh. 3.8 - Prob. 81PCh. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Prob. 85PCh. 3.8 - Prob. 86PCh. 3.8 - Prob. 87PCh. 3.8 - Prob. 88PCh. 3.8 - Prob. 89PCh. 3.8 - Prob. 90PCh. 3.8 - Carbon dioxide gas enters a pipe at 3 MPa and 500...Ch. 3.8 - A 0.016773-m3 tank contains 1 kg of...Ch. 3.8 - What is the physical significance of the two...Ch. 3.8 - A 3.27-m3 tank contains 100 kg of nitrogen at 175...Ch. 3.8 - Prob. 95PCh. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - Nitrogen at 150 K has a specific volume of...Ch. 3.8 - A 1-m3 tank contains 2.841 kg of steam at 0.6 MPa....Ch. 3.8 - Prob. 102PCh. 3.8 - Prob. 103PCh. 3.8 - On a certain day, the temperature and relative...Ch. 3.8 - Prob. 105PCh. 3.8 - Consider two rooms that are identical except that...Ch. 3.8 - A thermos bottle is half-filled with water and is...Ch. 3.8 - Prob. 108RPCh. 3.8 - The combustion in a gasoline engine may be...Ch. 3.8 - A tank contains argon at 600C and 200 kPa gage....Ch. 3.8 - Prob. 111RPCh. 3.8 - Prob. 112RPCh. 3.8 - A rigid tank with a volume of 0.117 m3 contains 1...Ch. 3.8 - Prob. 114RPCh. 3.8 - Ethane at 10 MPa and 100C is heated at constant...Ch. 3.8 - Prob. 116RPCh. 3.8 - A 10-kg mass of superheated refrigerant-134a at...Ch. 3.8 - A 4-L rigid tank contains 2 kg of saturated...Ch. 3.8 - The gage pressure of an automobile tire is...Ch. 3.8 - Prob. 120RPCh. 3.8 - Steam at 400C has a specific volume of 0.02 m3/kg....Ch. 3.8 - A tank whose volume is unknown is divided into two...Ch. 3.8 - Prob. 123RPCh. 3.8 - Prob. 124RPCh. 3.8 - Prob. 125RPCh. 3.8 - A tank contains helium at 37C and 140 kPa gage....Ch. 3.8 - Prob. 127RPCh. 3.8 - Prob. 131RPCh. 3.8 - Consider an 18-m-diameter hot-air balloon that,...Ch. 3.8 - Prob. 134FEPCh. 3.8 - Water is boiled at 1 atm pressure in a coffeemaker...Ch. 3.8 - Prob. 136FEPCh. 3.8 - Prob. 137FEPCh. 3.8 - Water is boiled in a pan on a stove at sea level....Ch. 3.8 - Prob. 139FEPCh. 3.8 - Consider a sealed can that is filled with...Ch. 3.8 - A rigid tank contains 2 kg of an ideal gas at 4...Ch. 3.8 - The pressure of an automobile tire is measured to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A soup is set to boil. When the soup reaches 170°F, remove it from the heat and set it on the kitchen counter. The air in the kitchen is 80°F, and the soup in the bowl is 120°F after two minutes. After removing the soup from the heat, how long will it be 90°F?arrow_forwarda) A rigid recovery cylinder has a volume of 0.02 m³, contains Refrigerant R-134a as shown in Figure Q1. Initially, the density and temperature of the refrigerant are 85 kg/m3 and 48°C, respectively. Due to heat transfer to the refrigerant, its pressure and temperature were observed to increase until it becomes saturated vapor. Show the process on a T-v diagram with respect to saturation lines, and determine, i) the final temperature of the refrigerant, °C, ii) the heat transfer to the refrigerant, kJ. R- 134a Qin 48°C 85 kg/m? 0.02 m Fig. Q1 b) The United States Environmental Protection Agency (US EPA) has specified that the temperature of recovered refrigerant inside the rigid recovery cylinder must not exceed 52°C for safety reasons. To satisfy this requirement, the saturated vapor in part a) above needs to be cooled to a mixture at 52°C by removing heat from the refrigerant. Determine the amount of heat (kJ) that needs to be removed from the refrigerant.arrow_forwardSteam at 3.5 MPa initially has a temperature of 350C. It was then cooled in an isobaric process until all of it was turned into saturated liquid. Solve for the change in enthalpy.arrow_forward
- Water is stored in a closed tank of capacity 0.1m3. The quality of water is 60% and initial pressure is 7 bar. Heat is transferred to the water until the tank contains only saturated vapour. At the end of this process, determine the mass of vapour in the tank, and the final pressure inside the tank.arrow_forwardPlease assist with this question on thermodynamicsarrow_forward2. 0.3 kg of carbon dioxide is contained in a cylinder with a piston. Initial conditions are 200 kPa and 30°C. It was compressed to 600 kPa by an isothermal process (a process in which the temperature is constant). Find out what has been done during this process.arrow_forward
- a rigid tank contains 50kg of saturated liquid water at 90 degrees Celcius. if you add heat to the tank, could you determine the change of the state?arrow_forward4. Arigid tank contains 2 kg of air. The tank is initially at 25°C. The tank is heated until the pressure doubles. Determine the final temperature in Kelvins and the change in internal energy in kJ.arrow_forwardA kilogram of Argon gas( MW= 40 kg/kmol, k=5/3) is in a piston cylinder set-up. Initially, it has pressure of 30kPa and volume of 0.2m3 and expanded to 20 kPa due to heat transfer. If the process is said to be isovolumic, find initial and final temperatures.arrow_forward
- One kilogram of saturated solid water at the triple point is heated to saturated liquid while the pressure is maintained constant. Determine the work and the heat transfer for the process, each in kJ. Show that the heat transfer equals the change in enthalpy of the water in this case.arrow_forward6. Two kilograms of water is contained in a piston-cylinder loaded with a linear spring and the outside atmosphere. Initial the water is at 200 kPa, and V = 0.2 m³. Heat is now added until the volume grows to 0.8 m³, and the temperature increases to 600°C. Determine the following: (a) Initial phase of the system (calculate quality if appropriate). (b) Find the final pressure of the system. Show how you determine the final state and which table to look for the pressure. (c) Show the process on a P-v diagram and explain why the process is linear.arrow_forwardA rigid tank whose volume is unknown is divided into two parts by a partition. One side of the tank contains an ideal gas at 933.75 C. The other side is evacuated and has a volume twice the size of the part containing the gas. The partition is now removed and the gas expands to fill the entire tank. Heat is now applied to the gas until the pressure equals the initial pressure. Determine the final temperature (K) of the gas.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license