Concept explainers
(a)
Find the applied torque and the corresponding angle of twist at the onset of yield.
(a)
Answer to Problem 107P
The applied torque at the onset of yield is
The corresponding angle of twist at the onset of yield is
Explanation of Solution
Given information:
The length of the shaft (L) is 0.9 m.
The shear stress
The rigidity modulus of steel (G) is 77.2 GPa.
The inner diameter of the shaft
The inner diameter of the shaft
Calculation:
Find the inner radius
Substitute 30 mm for
Find the outer radius
Substitute 70 mm for
Find the polar moment of inertia of a shaft (J) using the relation:
Substitute 0.035 m for
At the onset of yield, the stress distribution is the elastic distribution with
Find the applied torque
Substitute
Therefore, the applied torque at the onset of yield is
Find the angle of twist
Substitute
Therefore, the corresponding angle of twist at the onset of yield is
(b)
Find the applied torque and the corresponding angle of twist of the when the plastic zone is
(b)
Answer to Problem 107P
The applied torque when the plastic zone is 10 mm deep is
The corresponding angle of twist when the plastic zone is 10 mm deep is
Explanation of Solution
Given information:
The depth of plastic zone (t) is 10 mm.
Calculation:
Find the depth of elastic portion
Substitute 0.035 m for
Find the polar moment of inertia
Substitute 0.025 m for
Find the torque
Substitute
Find the expression of torque
Integrate the Equation (9).
Substitute 180 MPa for
Find the total applied torque (T):
Substitute
Therefore, the applied torque when depth of plastic zone is 10 mm is
Find the angle of twist
Substitute 180 MPa for
Therefore, the corresponding angle of twist when plastic zone is 10 mm is
Want to see more full solutions like this?
Chapter 3 Solutions
EBK MECHANICS OF MATERIALS
- strength of material MENG222 Please solve the problem step by step and make your line clear and don't forget to show me your steparrow_forward3.33 (a) For the solid steel shaft shown, determine the angle of twist at A. Use G = 77 GPa. (b) Solve part a, assuming that the steel shaft is hollow with a 15 mm outer radius and a 10 mm inner radius. 15 mm A 1.8 m T = 250 N. m Fig. P3.33arrow_forwardThe solid circular shaft shown is made of a steel that is assumed to be elastoplastic with τY = 145 MPa. Determine the magnitude T of the applied torques when the plastic zone is 23 mm deep. The magnitude T of the applied torques is kN·m.arrow_forward
- (a) Determine the largest torque that can be safely applied to the rectangular steel bar if the Compute the corresponding angle of twist using G= 80 GPa for steel. maximum shear stress is limited to 120 MPa. (b) %3D 20 mm S00 mm FIG. P3.49arrow_forwardA brass rod 8mm diameter and 400mm long fits centrally inside aluminum tube of the same length having an external diameter of 16mm and a wall thickness of 3mm. The rod and tube are rigidly connected at their ends so that they twist together when a torque of 20 Nm is applied. Galuminum = 30GPa; Gbrass = 40GPa. Determine: a) The values of the torsional stiffness for the rod and the tube b) The torque transmitted by each c) The maximum shear stress in each d) The angle of twistarrow_forward3.33 (a) For the solid steel shaft shown, determine the angle of twist at A. Use G = 11.2 × 10° psi. (b) Solve part a, assuming that the steel shaft is hollow with a 1.5-in. outer radius and a 0.75-in. inner radius. Fig. P3.32 1.5 in. A 3 ft T = 60 kip - in. %3D Fig. P3.33arrow_forward
- A composite shaft is made by slipping a bronze tube of 3-in. outer diameteran -in. inner diameter over a solid steel shaft of the same length and 2-in.-diameter. The two components are then fastened rigidly together at their ends. What is the largest torque that can be carried by the composite shaft if the working shear stresses are 8 ksi for bronze and 12 ksi for the steel? For bronze, G = 6 x 106 psi, and for steel, G = 12 x 106 psiarrow_forwardMechanics of materialarrow_forward3.39 The solid spindle AB has a diameter d. = 40 mm and is made of a steel with G = 77 GPa and Tal = 120 MPa, while sleeve C) is made of a brass with G = 39 GPa and Ln = 70 MPa, Determine (a) the largest torque T that can be applied at A if the given allow- able stresses are not to be exceeded and if the angle of twist of sleeve CD is not to exceed 0.375°, (b) the corresponding angle through which end A rotates. %3D 70 MPa. Determine %3D B - 15 mm 200 mm = 6 mm D 100 mm A T Fig. P3.39arrow_forward
- 1. The aluminium rod AB is bonded to the brass rod BD. Knowing that portion CD of the brass rod is hollow and has an inner diameter of 40 mm, determine the angle of twist at A. Take GAL = 27 GPa and GBr = 39 GPa respectively. 60 mm T = 1600 N - m 36 mm T = S00 N. m 250 mm 375 mm 400 mm Figure Q4.1: Compound shaftarrow_forwardA hollow circular tube with a 2.3-cm I.D. and 2.5-cm O.D. is rigidly supported at its ends. A 2.5 kN-m torque is applied at the center of this tube. What is the maximum shear stress acting on this tube?arrow_forwardA compound steel [G = 80 GPa] shaft consists of a solid 92-mm-diameter segment (1) and a solid 60-mm-diameter segment (2). The allowable shear stress of the steel is 96 MPa, and the maximum rotation angle at the free end of the compound shaft must be limited to φC ≤ 4°. Determine the magnitude of the largest torque TC that may be applied at C.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY