GO An alpha particle with kinetic energy 7.70 MeV collides with an 14N nucleus at rest, and the two transform into an 17O nucleus and a proton. The proton is emitted at 90° to the direction of the incident alpha particle and has a kinetic energy of 4.44 MeV. The masses of the various particles are alpha particle, 4.00260 u; 14N, 14.00307 u; proton, 1.007825 u; and 17O, 16.99914 u. In MeV, what are (a) the kinetic energy of the oxygen nucleus and (b) the Q of the reaction? (Hint: The speeds of the particles are much less than c.)
Want to see the full answer?
Check out a sample textbook solutionChapter 37 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Concepts of Genetics (12th Edition)
Applications and Investigations in Earth Science (9th Edition)
Fundamentals of Anatomy & Physiology (11th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Biology: Life on Earth (11th Edition)
- If the rest energies of a proton and a neutron (the two constituents of nuclei) are 938.3 and 939.6 MeV, what is the difference in their mass in kilograms?arrow_forward(a) What is the kinetic energy in MeV of a ray that is traveling at 0.998c? This gives some idea of how energetic a ray must be to travel at nearly the same speed as a ray. (b) What is the velocity of the ray relative to the ray?arrow_forward(a) Beta decay is nuclear decay in which an electron is emitted. If the electron is given 0.750 MeV of kinetic energy, what is its velocity? (b) Comment on how the high velocity is consistent with the kinetic energy as it compares to the rest mass energy of the electron.arrow_forward
- A muon formed high in Earth's atmosphere travels toward Earth at a speed v = 0.990c for a distance of 4.60 km as measured by an observer at rest with respect to Earth. It then decays into an electron, a neutrino, and an antineutrino. (a) How long does the muon survive according to an observer at rest on Earth? (b) Compute the gamma factor associated with the muon. (c) How much time passes according to an observer traveling with the muon? (d) What distance does the muon travel according to an observer traveling with the muon? (e) A third observer traveling toward the muon at c/2 measures the lifetime of the particle. According to this observer, is the muons lifetime shorter or longer than the lifetime measured by the observer at rest with respect to Earth? Explain.arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forwardUnreasonable Results A particle physicist discovers a neutral particle with a mass at 2.02733 u that he assumes is two neutrons bound together. (a) Find the binding energy. (b) What is unreasonable about this result? (c) What assumptions are unreasonable or inconsistent?arrow_forward
- A chain of nuclear reactions in the Suns core converts four protons into a helium nucleus. (a) What is the mass difference between four protons and a helium nucleus? (b) How much energy in MeV is released during the conversion of four protons into a helium nucleus?arrow_forwardThe primary decay mode for the negative pion is +v . (a) What is the energy release in MeV in this decay? (b) Using conservation of momentum, how much energy does each of the decay products receive, given the is at rest when it decays? You may assume the muon antineutrino is massless and has momentum p = E/c , just like a photon.arrow_forwardA positron is an antimatter version of the electron, having exactly the same mass. When a positron and an electron meet, they annihilate, converting all of their mass into energy. (a) Find the energy released, assuming negligible kinetic energy before the annihilation. (b) If this energy is given to a proton in the form of kinetic energy, what is its velocity? (c) If this energy is given to another electron in the form of kinetic energy, what is its velocity?arrow_forward
- Calculate the sum of the kinetic energies, in MeV, shared among the three outgoing alpha particles. The initial state is a proton and a boron-11 nucleus at rest, and the final state is three alpha particles with rest energy plus some total kinetic energy shared among the three alpha particles. The proton mass m=1.6726219E-27 kg, the boron-11 mass is 1.82814E-26 kg, and the mass of an alpha particle is 6.64648E-27kg. What is the kinetic energy of the 3 alpha particles in MeV? I found that the proton’s initial kinetic energy is 2.5 MeV.arrow_forwardAdding one neutron to 235U results in the excited state 236U that quickly decays into unstable isotopes of xenon and strontium plus two extra neutrons. 234 U92 + n → 236 U92 → 140 Xe54 + 94 Sr38 +2n How do the sum of the rest masses in initial and final states compare? a. sum of the masses of the initial state (235U92 + n) > sum of the masses of the final state (140Xe54 + 94Sr38 + 2n) b. sum of the masses of the final state (140Xe54 + 94Sr38 + 2n) > sum of the masses of the masses of the initial state (235U92 + n) c. sum of the masses of the final state (140Xe54 + 94Sr38 + 2n) = sum of the masses of the initial state (235U92 + n)arrow_forwardWhen Fermium (253.085174u) decays into Californium (249.074844u), it emits an alpha particle (4.002602u). If 1 u = 931.5 MeV, what is the energy released in the decay? MeVarrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning