Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 37, Problem 58P
The mass of an electron is 9.109 381 88 × 10−31 kg. To eight significant figures, find the following for the given electron kinetic energy: (a) γ and (b) β for K = 1.000 000 0 keV, (c) γ and (d) β for K = 1.0 000 0 MeV, and then (e) γ and (f) β for K = 1.000 000 0 GeV.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The mass of an electron is 9.109 381 88 x 10-31kg. Find (a) y and (b) 3 for an electron with kinetic energy 32.1024 MeV.
(a) Number i
Units
(b) Number
Units
The mass of an electron is 9.109 381 88* 10-31 kg. To six significant figures, find (a) g and (b) b for an electron with kinetic energy K= 100.000 MeV.
Chapter 37, Problem 041
-31
The mass of an electron is 9.109 381 88 × 103 kg. Find (a) y and (b) B for an electron with kinetic energy 68.0365 MeV.
(a) Number
Units
(b) Number
Units
Chapter 37 Solutions
Fundamentals of Physics Extended
Ch. 37 - A rod is to move at constant speed v along the x...Ch. 37 - Figure 37-16 shows a ship attached to reference...Ch. 37 - Reference frame S' is to pass reference frame S at...Ch. 37 - Figure 37-17 shows two clocks in stationary frame...Ch. 37 - Figure 37-18 shows two clocks in stationary frame...Ch. 37 - Sam leaves Venus in a spaceship headed to Mars and...Ch. 37 - The plane of clocks and measuring rods in Fig....Ch. 37 - The rest energy and total energy, respectively, of...Ch. 37 - Figure 37-20 shows the triangle of Fig 37-14 for...Ch. 37 - While on board a starship, you intercept signals...
Ch. 37 - Figure 37-21 shows one of four star cruisers that...Ch. 37 - The mean lifetime of stationary muons is measured...Ch. 37 - To eight significant figures, what is speed...Ch. 37 - You wish to make a round trip from Earth in a...Ch. 37 - Come back to the future. Suppose that a father is...Ch. 37 - ILW An unstable high-energy particle enters a...Ch. 37 - GO Reference frame S' is to pass reference frame S...Ch. 37 - The premise of the Planet of the Apes movies and...Ch. 37 - An electron of = 0.999 987 moves along the axis...Ch. 37 - SSM A spaceship of rest length 130 m races past a...Ch. 37 - A meter stick in frame S' makes an angle of 30...Ch. 37 - A rod lies parallel to the x axis of reference...Ch. 37 - The length of a spaceship is measured to be...Ch. 37 - GO A space traveler takes off from Earth and moves...Ch. 37 - A rod is to move at constant speed v along the x...Ch. 37 - GO The center of our Milky Way galaxy is about 23...Ch. 37 - Observer S reports that an event occurred on the x...Ch. 37 - SSM WWW In Fig. 37-9, the origins of the two...Ch. 37 - Inertial frame S' moves at a speed of 0.60c with...Ch. 37 - An experimenter arranges to trigger two flashbulbs...Ch. 37 - GO As in Fig. 37-9, reference frame S' passes...Ch. 37 - Relativistic reversal of events. Figures 37-25a...Ch. 37 - For the passing reference frames in Fig. 37-25,...Ch. 37 - ILW A clock moves along an x axis at a speed of...Ch. 37 - Bullwinkle in reference frame S' passes you in...Ch. 37 - In Fig. 37-9, observer S detects two flashes of...Ch. 37 - In Fig. 37-9, observer 5 detects two flashes of...Ch. 37 - SSM A particle moves along the x' axis of frame S'...Ch. 37 - In Fig. 37-11, frame S' moves relative to frame S...Ch. 37 - Galaxy A is reported to be receding from us with a...Ch. 37 - Stellar system Q1 moves away from us at a speed of...Ch. 37 - SSM WWW ILW A spaceship whose rest length is 350 m...Ch. 37 - GO In Fig. 37-26a, particle P is to move parallel...Ch. 37 - GO An armada of spaceships that is 1.00 ly long as...Ch. 37 - A sodium light source moves in a horizontal circle...Ch. 37 - SSM A spaceship, moving away from Earth at a speed...Ch. 37 - Prob. 36PCh. 37 - Assuming that Eq. 37-36 holds, find how fast you...Ch. 37 - Figure 37-27 is a graph of intensity versus...Ch. 37 - SSM A spaceship is moving away from Earth at speed...Ch. 37 - How much work must be done to increase the speed...Ch. 37 - SSM WWW The mass of an electron is 9.109 381 88 ...Ch. 37 - Prob. 42PCh. 37 - How much work must be done to increase the speed...Ch. 37 - In the reaction p 19F 16O, the masses are mp =...Ch. 37 - In a high-energy collision between a cosmic-ray...Ch. 37 - Prob. 46PCh. 37 - Prob. 47PCh. 37 - GO The mass of a muon is 207 times the electron...Ch. 37 - GO As you read this page on paper or monitor...Ch. 37 - To four significant figures, find the following...Ch. 37 - ILW What must be the momentum of a particle with...Ch. 37 - Apply the binomial theorem Appendix E to the last...Ch. 37 - Prob. 53PCh. 37 - GO What is for a particle with a K = 2.00E0 and b...Ch. 37 - Prob. 55PCh. 37 - a The energy released in the explosion of 1.00 mol...Ch. 37 - Quasars are thought to be the nuclei of active...Ch. 37 - The mass of an electron is 9.109 381 88 1031 kg....Ch. 37 - GO An alpha particle with kinetic energy 7.70 MeV...Ch. 37 - Temporal separation between two events. Events A...Ch. 37 - Spatial separation between two events. For the...Ch. 37 - GO In Fig. 37-28a, particle P is to move parallel...Ch. 37 - Superluminal jets. Figure 37-29a shows the path...Ch. 37 - GO Reference frame S' passes reference frame S...Ch. 37 - Another approach to velocity transformations. In...Ch. 37 - Continuation of Problem 65. Use the result of part...Ch. 37 - Continuation of Problem 65. Let reference frame C...Ch. 37 - Figure 37-16 shows a ship attached to reference...Ch. 37 - Prob. 69PCh. 37 - An airplane has rest length 40.0 m and speed 630...Ch. 37 - SSM To circle Earth in low orbit, a satellite must...Ch. 37 - Prob. 72PCh. 37 - SSM How much work is needed to accelerate a proton...Ch. 37 - A pion is created in the higher reaches of Earths...Ch. 37 - SSM If we intercept an electron having total...Ch. 37 - Prob. 76PCh. 37 - A spaceship at rest in a certain reference frame S...Ch. 37 - Prob. 78PCh. 37 - SSM What is the momentum in MeV/c of an electron...Ch. 37 - The radius of Earth is 6370 km, and its orbital...Ch. 37 - A particle with mass m has speed c/2 relative to...Ch. 37 - An elementary particle produced in a laboratory...Ch. 37 - What are a K, b E, and c p in GeV/c for a proton...Ch. 37 - A radar transmitter T is fixed to a reference...Ch. 37 - One cosmic-ray particle approaches northsouth axis...Ch. 37 - How much energy is released in the explosion of a...Ch. 37 - What potential difference would accelerate an...Ch. 37 - A Foron cruiser moving directly toward a Reptulian...Ch. 37 - In Fig. 37-35, three spaceships are in a chase....Ch. 37 - Space cruisers A and B are moving parallel to the...Ch. 37 - In Fig. 37-36, two cruisers fly toward a space...Ch. 37 - A relativistic train of proper length 200 m...Ch. 37 - Particle A with rest energy 200 MeV is at rest in...Ch. 37 - Figure 37-37 shows three situations in which a...Ch. 37 - Ionization measurements show that a particular...Ch. 37 - Prob. 96PCh. 37 - Prob. 97PCh. 37 - An astronaut exercising on a treadmill maintains a...Ch. 37 - A spaceship approaches Earth at a speed of 0.42c....Ch. 37 - Prob. 100PCh. 37 - In one year the United States consumption of...Ch. 37 - Quite apart from effects due to Earths rotational...Ch. 37 - Prob. 103P
Additional Science Textbook Solutions
Find more solutions based on key concepts
FOCUS ON INFORMATION In Bateslan mimicry, a palatable species gains protection by mimicking an unpalatable one....
Campbell Biology in Focus (2nd Edition)
Practice Exercise 2
Aspirin is composed of 60.0% carbon, 4.5% hydrogen, and 35.5% oxygen by mass, regardless o...
Chemistry: The Central Science (14th Edition)
41. A reaction in which A, B, and C react to form products is first order in A, second order in B, and zero ord...
Chemistry: Structure and Properties (2nd Edition)
A superheater takes 3kg/s saturated water vapor in and heats it at 2000kPato350C . Find the specific heat trans...
Fundamentals Of Thermodynamics
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the effective accelerating potential for electrons at the Stanford Linear Accelerator, if =1.00105 for them? (b) What is their total energy (nearly the same as kinetic in this case) in GeV?arrow_forwardThe muon is an unstable particle that spontaneously decays into an electron and two neutrinos. If the number of muons at t = 0 is N0, the number at time t is given by , where τ is the mean lifetime, equal to 2.2 μs. Suppose the muons move at a speed of 0.95c and there are 5.0 × 104 muons at t = 0. (a) What is the observed lifetime of the muons? (b) How many muons remain after traveling a distance of 3.0 km?arrow_forwardThe Sun generates energy by p-p proton-proton chain nuclear fusion. The second step of p-p chain is: 2H + 1H → 3He. The particle masses are 2.0141 u, 1.0078 u, 3.0160 u, for 2H, 1H, 3He, respectively. This step produces _____ MeV of energy.arrow_forward
- The nuclear reaction that powers the radioisotope thermoelectric generator is 2382Pu → 23U + He. The atomic masses of plutonium-238 and uranium-234 are 238.049554 amu and 234.040946 amu, respectively. The mass of an alpha particle is 4.001506 amu. How much energy in kJ is released when 1.00 g of plutonium-238 decays to uranium-234?arrow_forwardthat has 1 eV= Find the speed of an electron a kinetic energy of 2.09 eV. 1.602 x 10-19 J. Answer in units of m/s. Answer in units of m/s.arrow_forwardCalculate the speed (in m/s) of an electron and a proton with a kinetic energy of 1.15 electron volt (eV). (The electron and proton masses are me = 9.11 ✕ 10−31 kg and mp = 1.67 ✕ 10−27 kg. Boltzmann's constant is kB = 1.38 ✕ 10−23 J/K.) (a) an electron m/s (b) a proton m/s (c) Calculate the average translational kinetic energy in eV of a 3.09 ✕ 102 K ideal gas particle. (Recall from Topic 10 that 1 2 mv2 = 3 2 kBT.) eVarrow_forward
- Nuclear fusion can happen when a carbon nucleus of mass 12u fuses with a hydrogen nucleus of mass 1.00782 u to form a nitrogen nucleus of mass 13.00574 u. Determine how much energy is released by the reaction, expressed in MeV. (Keep five significant digits)arrow_forwardA carbon nucleus has mass 1.02e-26 kg. If its speed | is 0.982c (that is, ||/c = 0.982), what are the following values? particle energy = rest energy = 9.18e-10 kinetic energy Next an electric force acts on the carbon nucleus and does 2.5x10-9 J of work on the particle. Now what are the following values? particle energy = rest energy = kinetic energy =arrow_forwardAn electron has a rest mass of 9.11×10^(-28) g. a.) What is its mass in kg when moving with a speed of 0.95c_0? Express the answer in 4 significant figures. b.) What is the energy contained in the electron provided it is accelerated to the speed of light in kJ? Express the answer in 4 significant figures.arrow_forward
- The velocity of an alpha particle, He2+, with a mass of 6.64×10−27kg changes from v1=(−0.30, 0.45,0.10)c to v2=(−0.50, 0.30, −0.75)c, where c=3×108m/s. Determine the change in the particle’s kinetic energy.(In the kinetic energy formula, do not forget to square the speed of light.)arrow_forwardThe sun produces energy by nuclear fusion reactions, in which matter is converted into energy. By measuring the amount of energy we receive from the sun, we know that it is producing energy at a rate of 3.8 * 1026 W. (a) How many kilograms of matter does the sun lose each second? Approximately how many tons of matter is this (1 ton = 2000 lb)? (b) At this rate, how long would it take the sun to use up all its mass?arrow_forwardThe sun produces energy by nuclear fusion reactions, in which matter is converted into energy. By measuring the amount of energy we receive from the sun, we know that it is producing energy at a rate of 3.8 x 1026 W. (a) How many kilograms of matter does the sun lose each second? Approximately how many tons of matter is this (1 ton = 2000 lb)? (b) At this rate, how long would it take the sun to use up all its mass?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY