How much energy is released in the explosion of a fission bomb containing 3.0 kg of fissionable material? Assume that 0.10% of the mass is converted to released energy. (b) What mass of TNT would have to explode to provide the same energy release? Assume that each mole of TNT liberates 3.4 MJ of energy on exploding. The molecular mass of TNT is 0.227 kg/mol. (c) For the same mass of explosive, what is the ratio of the energy released in a nuclear explosion to that released in a TNT explosion?
How much energy is released in the explosion of a fission bomb containing 3.0 kg of fissionable material? Assume that 0.10% of the mass is converted to released energy. (b) What mass of TNT would have to explode to provide the same energy release? Assume that each mole of TNT liberates 3.4 MJ of energy on exploding. The molecular mass of TNT is 0.227 kg/mol. (c) For the same mass of explosive, what is the ratio of the energy released in a nuclear explosion to that released in a TNT explosion?
How much energy is released in the explosion of a fission bomb containing 3.0 kg of fissionable material? Assume that 0.10% of the mass is converted to released energy. (b) What mass of TNT would have to explode to provide the same energy release? Assume that each mole of TNT liberates 3.4 MJ of energy on exploding. The molecular mass of TNT is 0.227 kg/mol. (c) For the same mass of explosive, what is the ratio of the energy released in a nuclear explosion to that released in a TNT explosion?
(a) How much energy is released in the explosion of a fission bomb containing 3.0 kg of fissionable material? Assume that 0.10% of the mass is converted to released energy. (b) What mass of TNT would have to explode to provide the same energy release? Assume that each mole of TNT liberates 3.4 MJ of energy on exploding. The molecular mass of TNT is 0.227 kg/mol. (c) For the same mass of explosive, what is the ratio of the energy released in a nuclear explosion to that released in a TNT explosion?
During fission in nuclear power plants, uranium-235 can be used as radioactive material to produce energy. One shoots a neutron at the uranium nucleus, which then splits into two daughter nuclei plus three neutrons according to the reaction Suppose that a certain nuclear power plant splits 4.3% of all uranium nuclei in its reactors according to the formula and that it emits a total output of 3.8 GW. How long does it take for the nuclear power plant to consume 1 kg of uranium?
The energy yield of a nuclear weapon is often defined in terms of the equivalent mass of a conventional explosive. 1 ton of a conventional explosive releases 4.2 GJ. A typical nuclear warhead releases 250,000 times more, so the yield is expressed as 250 kilotons. That is a staggering explosion, but the asteroid impact that wiped out the dinosaurs was significantly greater. Assume that the asteroid was a sphere 10 km in diameter, with a density of 2500 kg/m3 and moving at 30 km/s. What energy was released at impact, in joules and in kilotons?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.