University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 37, Problem 37.41E
(a) Through what potential difference does an electron have to be accelerated, starting from rest, to achieve a speed of 0.980c? (b) What is the kinetic energy of the electron at this speed? Express your answer in joules and in electron volts.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose an electron (q= -e= -1.6 x 10-19 C,m=9.1x 10-31 kg) is accelerated from rest through a potential difference of Vab = +5000 V. Solve for
the final speed of the electron. Express numerical answer in two significant figures.
The potential energy U is related to the electron charge (-e) and potential Vab is related by the equation:
U =
Assuming all potential energy U is converted to kinetic energy K,
K +U = 0
K = -U
Since K-
and using the formula for potential energy above, we arrive at an equation for speed:
v = (
51/2
Plugging in values, the value of the electron's speed is:
V=
x 107 m/s
In this problem, we will try to understand why chemical reactions cannot power the Sun, but nuclear reactions can. The energy scale of chemical reactions is a few eV, where eV is a unit of energy called an electron volt. 1 eV = 1.602 x 10-19 J. A typical chemical reaction involves an energy change of ~0.1 to 10 eV. In contrast, a nuclear reaction typically involves a change in energy of order a few MeV (mega electron volts; a factor of a million larger).
Suppose that the Sun has a constant luminosity throughout its life, equal to its current luminosity of L⊙=3.827×1026J/s . Suppose also that the Sun is made entirely of hydrogen (or just protons, since the mass of the electron is about 2000 times smaller and is negligible in comparison). If every pair of two protons in the Sun undergo a one-time chemical reaction that nets ~1 eV of energy, how long would it take (in years) to expend all the available chemical energy?
Suppose an electron is accelerated from rest through a potential difference of 100,000 volts. Determine the electron's final kinetic energy, speed, and momentum (a) ignoring relativistic effects and (b) including relativistic effects.
Chapter 37 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 37.1 - As a high-speed spaceship flies past you, it fires...Ch. 37.2 - Stanley, who works for the rail system shown in...Ch. 37.3 - Samir (who is standing on the ground) starts his...Ch. 37.4 - A miniature spaceship is flying past you, moving...Ch. 37.5 - (a) In frame S events P1 and P2 occur at the same...Ch. 37.7 - According to relativistic mechanics, when you...Ch. 37.8 - A proton is accelerated from rest by a constant...Ch. 37 - You are standing on a train platform watching a...Ch. 37 - If simultaneity is not an absolute concept, does...Ch. 37 - A rocket is moving to the right at 12 the speed of...
Ch. 37 - A spaceship is traveling toward the earth from the...Ch. 37 - The average life span in the United States is...Ch. 37 - Prob. 37.6DQCh. 37 - Two events occur at the same space point in a...Ch. 37 - A high-speed train passes a train platform. Larry...Ch. 37 - Prob. 37.9DQCh. 37 - A student asserts that a material particle must...Ch. 37 - The speed of light relative to still water is 2.25...Ch. 37 - Prob. 37.12DQCh. 37 - Prob. 37.13DQCh. 37 - Why do you think the development of Newtonian...Ch. 37 - What do you think would be different in everyday...Ch. 37 - Suppose the two lightning bolts shown in Fig....Ch. 37 - The positive muon (), an unstable particle, lives...Ch. 37 - How fast must a rocket travel relative to the...Ch. 37 - A spaceship flies past Mars with a speed of 0.985c...Ch. 37 - The negative pion () is an unstable particle with...Ch. 37 - As you pilot your space utility vehicle at a...Ch. 37 - A spacecraft flies away from the earth with a...Ch. 37 - An alien spacecraft is flying overhead at a great...Ch. 37 - A spacecraft of the Trade Federation rites past...Ch. 37 - A meter stick moves past you at great speed. Its...Ch. 37 - Why Are We Bombarded by Muons? Muons are unstable...Ch. 37 - An unstable particle is created in the upper...Ch. 37 - As measured by an observer on the earth, a...Ch. 37 - A rocket ship flies past the earth at 91.0% of the...Ch. 37 - An observer in frame S is moving to the right...Ch. 37 - Space pilot Mavis zips past Stanley at a constant...Ch. 37 - A pursuit spacecraft from the planet Tatooine is...Ch. 37 - An enemy spaceship is moving toward your...Ch. 37 - Two particles are created in a high-energy...Ch. 37 - Two particles in a high-energy accelerator...Ch. 37 - Two particles in a high-energy accelerator...Ch. 37 - An imperial spaceship, moving at high speed...Ch. 37 - Tell It to the Judge. (a) How fast must you be...Ch. 37 - Electromagnetic radiation from a star is observed...Ch. 37 - A source of electromagnetic radiation is moving in...Ch. 37 - Relativistic Baseball. Calculate the magnitude of...Ch. 37 - A proton has momentum with magnitude p0 when its...Ch. 37 - When Should You Use Relativity? As you have seen,...Ch. 37 - Prob. 37.29ECh. 37 - An electron is acted upon by a force of 5.00 1015...Ch. 37 - What is the speed of a particle whose kinetic...Ch. 37 - If a muon is traveling at 0.999c, what are its...Ch. 37 - A proton (rest mass 1.67 1027 kg) has total...Ch. 37 - (a) How much work must be done on a particle with...Ch. 37 - An Antimatter Reactor. When a particle meets its...Ch. 37 - Electrons are accelerated through a potential...Ch. 37 - A particle has rest mass 6.64 1027 kg and...Ch. 37 - Creating a Particle. Two protons (each with rest...Ch. 37 - Compute the kinetic energy of a proton (mass 1.67 ...Ch. 37 - What is the kinetic energy of a proton moving at...Ch. 37 - (a) Through what potential difference does an...Ch. 37 - Prob. 37.42ECh. 37 - After being produced in a collision between...Ch. 37 - Inside a spaceship flying past the earth at...Ch. 37 - The starships of the Solar Federation are marked...Ch. 37 - A cube of metal with sides of length a sits at...Ch. 37 - A space probe is sent to the vicinity of the star...Ch. 37 - A muon is created 55.0 km above the surface of the...Ch. 37 - The Large Hadron Collider (LHC). Physicists and...Ch. 37 - The net force F on a particle of mass m is...Ch. 37 - Everyday Time Dilation. Two atomic clocks are...Ch. 37 - The distance to a particular star, as measured in...Ch. 37 - CP erenkov Radiation. The Russian physicist P A....Ch. 37 - Prob. 37.54PCh. 37 - CP A nuclear bomb containing 12.0 kg of plutonium...Ch. 37 - In the earths rest frame, two protons are moving...Ch. 37 - In certain radioactive beta decay processes, the...Ch. 37 - Two events are observed in a frame of reference S...Ch. 37 - One of the wavelengths of light emitted by...Ch. 37 - Albert in Wonderland. Einstein and Lorentz, being...Ch. 37 - Measuring Speed by Radar. A baseball coach uses a...Ch. 37 - Prob. 37.62PCh. 37 - CP In a particle accelerator a proton moves with...Ch. 37 - CP The French physicist Armand Fizeau was the...Ch. 37 - DATA As a research scientist at a linear...Ch. 37 - Prob. 37.66PCh. 37 - DATA You are a scientist studying small aerosol...Ch. 37 - CP Determining the Masses of Stars. Many of the...Ch. 37 - CP Kaon Production. In high-energy physics, new...Ch. 37 - Prob. 37.70CPCh. 37 - An airplane has a length of 60 m when measured at...Ch. 37 - If the airplane of Passage Problem 37.71 has a...Ch. 37 - In our universe, the rest energy of an electron is...Ch. 37 - In the alternate universe, how fast must an object...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A 310-g paperback book rests on a 1.2-kg textbook. A force is applied to the textbook, and the two books accele...
Essential University Physics: Volume 1 (3rd Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
A major artery with a cross-sectional area of 1.00 cm2 branches into 18 smaller arteries, each with an average ...
College Physics
7. In Manet’s A Bar at the Folies-Bergere (see Figure Q18.7) the reflection of the barmaid is visible in the mi...
College Physics: A Strategic Approach (4th Edition)
The force, when you push against a wall with your fingers, they bend.
Conceptual Physics (12th Edition)
The height of a certain hill (in feet) is given by , where y is the distance (in miles) north, x the distance e...
Introduction to Electrodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Through what potential difference does an electron have to be accelerated, starting from rest, to achieve a speed of 0.980c? (b) What is the kinetic energy of the electron at this speed?arrow_forwardIn an x-ray tube, high-speed electrons are slammed into a lead target, giving off x-rays. If the electrons are accelerated from rest through a potential difference of 190 000 volts, what speed do they have when they strike the target? ( q e = 1.6 × 10 −19 C, m e = 9.11 × 10 −31 kg, and c = 3.00 × 10 8 m/s)arrow_forwardProblem 17: An evacuated tube uses a potential difference of AV= 0.56 kV to accelerate electrons, which then hit a copper plate and produce X-rays. . Part (a) Write an expression for the non-relativistic speed of these electrons v in terms of e, AV, and m, assuming the electrons start from rest. v = AV 7 9 HOME a b d. 4 5 e h 1 j k P END m S V VO BACKSPACE CLEAR DEL Submit Hint Feedback I give up! Hints: 0% deduction per hint. Hints remaining: 2 Feedback: 1% deduction per feedback. Part (b) Calculate the non-relativistic speed of these electrons v in m/s.arrow_forward
- Suppose an electron (q = - e= - 1.6 × 10¬19 C,m=9.1×10¯3' kg) is accelerated from rest through a potential difference of Vab = +5000 V. Solve for the final speed of the electron. Express numerical answer in two significant figures. The potential energy U is related to the electron charge (-e) and potential Vab is related by the equation: U = Assuming all potential energy U is converted to kinetic energy K, K + U = 0 K = -U Since K = 5mv and using the formula for potential energy above, we arrive at an equation for speed: v = ( 1/2 Plugging in values, the value of the electron's speed is: x 10' m/s v=arrow_forwardAn electron has a speed of 0.643c. Through what potential difference would the electron need to be accelerated (starting from rest) in order to reach this speed? (c = 3.00 × 108 m/s, e = 1.60 × 10-19 C, mel = 9.11 × 10-31 kg)arrow_forwardIn large CRT televisions, electrons are accelerated from rest by a potential difference of 23.88 kV and shot onto a phosphorescent screen to produce an image. What is the speed of the electrons when they reach the screen? (g. = 1.602 x 10-19C ;me = 9.11 x 10 -31 kg) Answer: x10' m (express your answers in tenths place or one decimal digit only)arrow_forward
- (a) An positron (electron with a positive charge) starts at rest and accelerates through an electric field established by a set of parallel plates with a potential difference of 35 V. What is the speed of the positron the instant before it hits the negative plate?(e = 1.6 × 10-19 C, melectron = 9.1 × 10-31 kg) (b) Instead of hitting the negative plate, the positron, travelling East, escapes the parallel plates through a small hole and enters a magnetic field of 0.75 T directed downward. What will be the magnetic force (magnitude and direction) on the charge?(c) Once the positron has entered the magnetic field, it is in circular motion. What is the radius of the positron's circular path?arrow_forwardAn electron has rest energy 512 x 103 eV. In electron-volts (eV), calculate the kinetic energy of an electron moving at 0.89c. (Give your answer in eV, but don't include the units.)arrow_forwardHow much work must be done on an electron to accelerate it from rest to a speed of 0.909c? Number i Units >arrow_forward
- An electron is accelerating under a potential difference of 105 volts. (m,=9,108x10 31) a) What is the kinetic energy of the electron?arrow_forwardWhat is the speed of a proton accelerated by a potential difference of 165 MV?arrow_forwardAfter a proton with an initial speed of 1.50 x 10^5 m/s has increased its speed by accelerating through a potential difference of 100 V, what is its final speed? (m^proton = 1.67 x 10^-27 kg)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY