University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 37, Problem 37.40E
What is the kinetic energy of a proton moving at (a) 0.100c; (b) 0.500c; (c) 0.900c? How much work must be done to (d) increase the proton’s speed from 0.100c to 0.500c and (e) increase the proton’s speed from 0.500c to 0.900c? (f) How do the last two results compare to results obtained in the nonrelativistic limit?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 37 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 37.1 - As a high-speed spaceship flies past you, it fires...Ch. 37.2 - Stanley, who works for the rail system shown in...Ch. 37.3 - Samir (who is standing on the ground) starts his...Ch. 37.4 - A miniature spaceship is flying past you, moving...Ch. 37.5 - (a) In frame S events P1 and P2 occur at the same...Ch. 37.7 - According to relativistic mechanics, when you...Ch. 37.8 - A proton is accelerated from rest by a constant...Ch. 37 - You are standing on a train platform watching a...Ch. 37 - If simultaneity is not an absolute concept, does...Ch. 37 - A rocket is moving to the right at 12 the speed of...
Ch. 37 - A spaceship is traveling toward the earth from the...Ch. 37 - The average life span in the United States is...Ch. 37 - Prob. 37.6DQCh. 37 - Two events occur at the same space point in a...Ch. 37 - A high-speed train passes a train platform. Larry...Ch. 37 - Prob. 37.9DQCh. 37 - A student asserts that a material particle must...Ch. 37 - The speed of light relative to still water is 2.25...Ch. 37 - Prob. 37.12DQCh. 37 - Prob. 37.13DQCh. 37 - Why do you think the development of Newtonian...Ch. 37 - What do you think would be different in everyday...Ch. 37 - Suppose the two lightning bolts shown in Fig....Ch. 37 - The positive muon (), an unstable particle, lives...Ch. 37 - How fast must a rocket travel relative to the...Ch. 37 - A spaceship flies past Mars with a speed of 0.985c...Ch. 37 - The negative pion () is an unstable particle with...Ch. 37 - As you pilot your space utility vehicle at a...Ch. 37 - A spacecraft flies away from the earth with a...Ch. 37 - An alien spacecraft is flying overhead at a great...Ch. 37 - A spacecraft of the Trade Federation rites past...Ch. 37 - A meter stick moves past you at great speed. Its...Ch. 37 - Why Are We Bombarded by Muons? Muons are unstable...Ch. 37 - An unstable particle is created in the upper...Ch. 37 - As measured by an observer on the earth, a...Ch. 37 - A rocket ship flies past the earth at 91.0% of the...Ch. 37 - An observer in frame S is moving to the right...Ch. 37 - Space pilot Mavis zips past Stanley at a constant...Ch. 37 - A pursuit spacecraft from the planet Tatooine is...Ch. 37 - An enemy spaceship is moving toward your...Ch. 37 - Two particles are created in a high-energy...Ch. 37 - Two particles in a high-energy accelerator...Ch. 37 - Two particles in a high-energy accelerator...Ch. 37 - An imperial spaceship, moving at high speed...Ch. 37 - Tell It to the Judge. (a) How fast must you be...Ch. 37 - Electromagnetic radiation from a star is observed...Ch. 37 - A source of electromagnetic radiation is moving in...Ch. 37 - Relativistic Baseball. Calculate the magnitude of...Ch. 37 - A proton has momentum with magnitude p0 when its...Ch. 37 - When Should You Use Relativity? As you have seen,...Ch. 37 - Prob. 37.29ECh. 37 - An electron is acted upon by a force of 5.00 1015...Ch. 37 - What is the speed of a particle whose kinetic...Ch. 37 - If a muon is traveling at 0.999c, what are its...Ch. 37 - A proton (rest mass 1.67 1027 kg) has total...Ch. 37 - (a) How much work must be done on a particle with...Ch. 37 - An Antimatter Reactor. When a particle meets its...Ch. 37 - Electrons are accelerated through a potential...Ch. 37 - A particle has rest mass 6.64 1027 kg and...Ch. 37 - Creating a Particle. Two protons (each with rest...Ch. 37 - Compute the kinetic energy of a proton (mass 1.67 ...Ch. 37 - What is the kinetic energy of a proton moving at...Ch. 37 - (a) Through what potential difference does an...Ch. 37 - Prob. 37.42ECh. 37 - After being produced in a collision between...Ch. 37 - Inside a spaceship flying past the earth at...Ch. 37 - The starships of the Solar Federation are marked...Ch. 37 - A cube of metal with sides of length a sits at...Ch. 37 - A space probe is sent to the vicinity of the star...Ch. 37 - A muon is created 55.0 km above the surface of the...Ch. 37 - The Large Hadron Collider (LHC). Physicists and...Ch. 37 - The net force F on a particle of mass m is...Ch. 37 - Everyday Time Dilation. Two atomic clocks are...Ch. 37 - The distance to a particular star, as measured in...Ch. 37 - CP erenkov Radiation. The Russian physicist P A....Ch. 37 - Prob. 37.54PCh. 37 - CP A nuclear bomb containing 12.0 kg of plutonium...Ch. 37 - In the earths rest frame, two protons are moving...Ch. 37 - In certain radioactive beta decay processes, the...Ch. 37 - Two events are observed in a frame of reference S...Ch. 37 - One of the wavelengths of light emitted by...Ch. 37 - Albert in Wonderland. Einstein and Lorentz, being...Ch. 37 - Measuring Speed by Radar. A baseball coach uses a...Ch. 37 - Prob. 37.62PCh. 37 - CP In a particle accelerator a proton moves with...Ch. 37 - CP The French physicist Armand Fizeau was the...Ch. 37 - DATA As a research scientist at a linear...Ch. 37 - Prob. 37.66PCh. 37 - DATA You are a scientist studying small aerosol...Ch. 37 - CP Determining the Masses of Stars. Many of the...Ch. 37 - CP Kaon Production. In high-energy physics, new...Ch. 37 - Prob. 37.70CPCh. 37 - An airplane has a length of 60 m when measured at...Ch. 37 - If the airplane of Passage Problem 37.71 has a...Ch. 37 - In our universe, the rest energy of an electron is...Ch. 37 - In the alternate universe, how fast must an object...
Additional Science Textbook Solutions
Find more solutions based on key concepts
32. The rolling resistance for steel on steel is quite low; the coefficient of rolling friction is typically ?r...
College Physics: A Strategic Approach (4th Edition)
Generalize the derivation of the lensmakers formula (Equation 31.7) to show that a lens of refractive index nle...
Essential University Physics (3rd Edition)
Write each number in scientific notation.
7. 0.00413
Applied Physics (11th Edition)
(II) An aquarium filled with water has flat glass sides whose index of refraction is 1.56. A beam of light from...
Physics for Scientists and Engineers with Modern Physics
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forward(a) Beta decay is nuclear decay in which an electron is emitted. If the electron is given 0.750 MeV of kinetic energy, what is its velocity? (b) Comment on how the high velocity is consistent with the kinetic energy as it compares to the rest mass energy of the electron.arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0109ly ly away is receding from us at 0. 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c, as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from the Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forward
- The mass of the fuel in a nuclear reactor decreases by an observable amount as it puts out energy. Is the same true for the coal and oxygen combined in a conventional power plant? If so, is this observable in practice for the coal and oxygen? Explain.arrow_forward(a) What is the effective accelerating potential for electrons at the Stanford Linear Accelerator, if =1.00105 for them? (b) What is their total energy (nearly the same as kinetic in this case) in GeV?arrow_forwardCalculate the momentum of a proton moving with a speed of (a) 0.010c, (b) 0.50c, (c) 0.90c. (d) Convert the answers of (a)(c) to MeV/c.arrow_forward
- An enemy spacecraft moves away from the Earth at a speed of v = 0.800c (Fig. P9.19). A galactic patrol spacecraft pursues at a speed of u = 0.900c relative to the Earth. Observers on the Earth measure the patrol craft to be overtaking the enemy craft at a relative speed of 0.100c. With what speed is the patrol craft overtaking the enemy craft as measured by the patrol crafts crew? Figure. P9.19arrow_forwardAn interstellar space probe is launched from Earth. After a brief period of acceleration, it moves with a constant velocity, 70.0% of the speed of light. Its nuclear-powered batteries supply the energy to keep its data transmitter active continuously. The batteries have a lifetime of 15.0 years as measured in a rest frame. (a) How long do the batteries on the space probe last as measured by mission control on Earth? (b) How far is the probe from Earth when its batteries fail as measured by mission control? (c) How far is the probe from Earth as measured by its built-in trip odometer when its batteries fail? (d) For what total time after launch are data received from the probe by mission control? Note dial radio waves travel at the speed of light and fill the space between the probe and Earth at the time the battery fails.arrow_forwardSuppose our Sun is about to explode. In an effort to escape, we depart in a spaceship at v = 0.80c and head toward the star Tau Ceti, 12 lightyears away. When we reach the midpoint of our journey from the Earth, we see our Sun explode and, unfortunately, at the same instant we see Tau Ceti explode as well. (a) In the spaceship’s frame of reference, should we conclude that the two explosions occurred simultaneously? If not, which occurred first? (b) In a frame of reference in which the Sun and Tau Ceti are at rest, did they explode simultaneously? If not, which exploded first?arrow_forward
- Consider an electron moving with speed 0.980c. a. What is the rest mass energy of this electron? b. What is the total energyof this electron? c. What is the kinetic energy of this electron?arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0x109ly away is receding from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forwardA box is cubical with sides of proper lengths L1 = L2 = L3, as shown in Figure P26.14, when viewed in its own rest frame. If this block moves parallel to one of its edges with a speed of 0.80c past an observer, (a) what shape does it appear to have to this observer? (b) What is the length of each side as measured by the observer? Figure P26.14arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY