A rocket ship flies past the earth at 91.0% of the speed of light . Inside, an astronaut who is undergoing a physical examination is having his height measured while he is lying down parallel to the direction in which the ship is moving. (a) If his height is measured to be 2.00 m by his doctor inside the ship, what height would a person watching this from the earth measure? (b) If the earth-based person had measured 2.00 m, what would the doctor in the spaceship have measured for the astronaut’s height? Is this a reasonable height? (c) Suppose the astronaut in part (a) gets up after the examination and stands with his body perpendicular to the direction of motion. What would the doctor in the rocket and the observer on earth measure for his height now?
A rocket ship flies past the earth at 91.0% of the speed of light . Inside, an astronaut who is undergoing a physical examination is having his height measured while he is lying down parallel to the direction in which the ship is moving. (a) If his height is measured to be 2.00 m by his doctor inside the ship, what height would a person watching this from the earth measure? (b) If the earth-based person had measured 2.00 m, what would the doctor in the spaceship have measured for the astronaut’s height? Is this a reasonable height? (c) Suppose the astronaut in part (a) gets up after the examination and stands with his body perpendicular to the direction of motion. What would the doctor in the rocket and the observer on earth measure for his height now?
A rocket ship flies past the earth at 91.0% of the speed of light. Inside, an astronaut who is undergoing a physical examination is having his height measured while he is lying down parallel to the direction in which the ship is moving. (a) If his height is measured to be 2.00 m by his doctor inside the ship, what height would a person watching this from the earth measure? (b) If the earth-based person had measured 2.00 m, what would the doctor in the spaceship have measured for the astronaut’s height? Is this a reasonable height? (c) Suppose the astronaut in part (a) gets up after the examination and stands with his body perpendicular to the direction of motion. What would the doctor in the rocket and the observer on earth measure for his height now?
Definition Definition Rate at which light travels, measured in a vacuum. The speed of light is a universal physical constant used in many areas of physics, most commonly denoted by the letter c . The value of the speed of light c = 299,792,458 m/s, but for most of the calculations, the value of the speed of light is approximated as c = 3 x 10 8 m/s.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.