Concept explainers
Stanley, who works for the rail system shown in Fig. 37.5, has carefully synchronized the clocks at all of the rail stations. At the moment that Stanley measures all of the clocks striking noon, Mavis is on a high-speed passenger car traveling from Ogdenville toward North Haverbrook. According to Mavis, when the Ogdenville clock strikes noon, what time is it in North Haverbrook? (i) Noon; (ii) before noon; (iii) after noon.
Want to see the full answer?
Check out a sample textbook solutionChapter 37 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Additional Science Textbook Solutions
Essential University Physics: Volume 2 (3rd Edition)
Conceptual Physical Science (6th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
University Physics Volume 1
Cosmic Perspective Fundamentals
Lecture- Tutorials for Introductory Astronomy
- It is said that Einstein, in his teenage years, asked the question, What would I see in a mirror if I carried it in my hands and ran at the speed of light? How would you answer this question?arrow_forwardExplain why, when defining the length of a rod, it is necessary to specify that the positions of the ends of the rod are to be measured simultaneously.arrow_forwardTwo astronomical events are observed to occur at a time of 0.30 s apart and a distance separation of 2.0109m from each other. How fast must a spacecraft travel from the site of one event toward the other to make the events occur at the same time when measured in the frame of reference of the spacecraft?arrow_forward
- Five clocks are being tested in a laboratory. Exactly at noon, as determined by the WWV time signal, on successive days of a week the clocks read as in the following table. Rank the five clocks according to their relative value as good timekeepers, best to worst. Give the number of the correct clock in each case. Which clock is (a) the best timekeeper? (b) the second-best timekeeper? (c) the third-best timekeeper? (d) the fourth-best timekeeper? (e) the worst timekeeper? Clock Sun. Mon. Tues Wed. Thurs. Fi. Sat. A. 12:36:40 12:36:56 12:37:12 12:37:27 12:37:44 1237-59 12:38:14 11:59:59 12:00:02 11:59-57 12:00:07 12:00:02 11:59:56 12:00:03 B 15:50:45 15:51:43 15:52-41 15:5339 15:54:37 15:5535 155633 D 12:03:59 12:0252 1201:45 12:00:38 11:59:31 11:58:24 11:57:17 E 12:03:59 12:02:49 12:0154 12:01:52 1201:32 1201:22 1201:12 (a) (b) (c) (d) (e) MacBook Pro G Search or type URL @ 23 $ % & 2 3 4 5 6 7 9 Y P W F G H K C V N * 00arrow_forwardA star is 12.2 ly (light-years) from Earth. HINT (a) At what constant speed (in m/s) must a spacecraft travel on its journey to the star so that the Earth–star distance measured by an astronaut onboard the spacecraft is 4.36 ly? m/s (b) What is the journey's travel time in years as measured by a person on Earth? NO SCIENTIFIC NOTATION ANSWERS THANK YOUarrow_forwardBecause of the earth’s rotation, a person living on top of a mountain moves at a faster speed than someone at sea level. The mountain dweller’s clocks thus run slowly compared to those at sea level. If the average life span of a hermit is 80 years, on average how much longer would a hermit dwelling on the top of a 3000-m-high mountain live compared to a sea- level hermit?arrow_forward
- The Global Positioning System (GPS) relies on very accurate atomic clocks aboard a network of 24 satellites, each of which orbits the Earth in 12 hours. To provide a resolution better than 1 meter on Earth, the clocks must not gain or lose more than 3 ns in 12 hours. That is, the clocks must be accurate to 3 x 10-⁹ s/(12 hr) = 7 × 10-14 The satellites move at a speed v = 3.9 km/s in circular orbits. Is it necessary for GPS receivers on Earth to account for special relativistic effects?arrow_forward1) Two identical atomic clocks are manufactured at a factory. One clock remains at the factory, and the other is transported across the country to a physics lab. When the clock arrives at the physics lab, it reads 9:00 a.m. At this same time, does the clock at the factory read a time that is before 9:00 a.m., equal to 9:00 a.m., or after 9:00 a.m.? Explain. 2) Suppose you are a traveling salesman for SSC, the Spacely Sprockets Company. You travel on a spaceship that reaches speeds near the speed of light, and you are paid by the hour. (a) When you return to Earth after a sales trip, would you prefer to be paid according to the clock at Spacely Sprockets universal headquarters on Earth, according to the clock on the spaceship in which you travel, or would your pay be the same in either case? Your goal is to get paid as much as possible. (b) Choose the best explanation from among the following: I. You want to be paid according to the clock on Earth, because the clock on the spaceship…arrow_forwardThe speed of light in free space has been measured to be 2.99792458 x 108-m/s. Express the speed of light to (a) three significant figures, (b) five significant figures, and (c) seven significant figures.arrow_forward
- (a) How long in seconds does it take a radio signal to travel 180 km from a transmitter to a receiving antenna? (b) We see a full Moon by reflected sunlight. How much earlier did the light that enters our eye leave the Sun? The Earth – Moon and Earth – Sun distances are 3.8x105 km and 1.5 × 108 km, respectively. (c) What is the round-trip travel time in seconds for light between Earth and a spaceship at a 6.8 × 107 km distance from Earth? (d) Suppose astronomers observe a supernova about 7300 light-years (ly) distant. How long ago in years did the explosion actually occur?arrow_forwardThe speed of light is exactly e = 299792458 m - s1. (Also written 299, 792, 458 m - s-1 or 2.99792458 × 10°m - s1. This is exact because it is the definition of the metre.) It takes light 8.3 minutes to get from the sun to the earth. Assuming that the earth's orbit is exactly circular (an approximation) and that its speed is constant, and using the data in this question, calculate the speed of the earth in its orbit around the sun in km · hr. Practise writing your conversions clearly using the 'multiply by 1' technique. Speed of the earth =_ km per hour. Write your answer in standard (not scientific) notation, i.e. without using exponents, and without using commas. However, remember to use the correct number of significant figures. (Hint: which is the least precise of the given data?) Do not include units.arrow_forwardA cosmic ray travels 60 km through the earth’s atmosphere in 400 μs, as measured by experimenters on the ground. How long does the journey take according to the cosmic ray?arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning