
Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 37, Problem 19RQ
What are some of the properties that must be possessed by resistance-welding electrodes?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A 2D incompressible flow has velocitycomponents u= X^2 - 2y^2 and v=aX^b y^c
,where a, b, and c are numbers.
Find the values of a, b, and c
Find the stream function
Please can you assist with the attached question please?
(a) Find a second-order homogeneous linear ODE for which the given functions are
solutions. (b) Show linear independence by the Wronskian. (c) Solve the initial value
problem.
a. cos(5x), sin(5x), y(0) = 3, y'(0) = −5
b. e-2.5x cos(0.3x), e-2.5x sin(0.3x), y(0) = 3, y'(0) = -7.5
Chapter 37 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 37 - What are the two primary functions of the...Ch. 37 - What are the two major roles of the applied...Ch. 37 - Why might resistance welding be considered a form...Ch. 37 - Why is there no need for fluxes or shielding gases...Ch. 37 - Prob. 5RQCh. 37 - What are the three components that contribute to...Ch. 37 - What measures can be taken to reduce the...Ch. 37 - What factors control the resistance between the...Ch. 37 - What are the possible consequences of too little...Ch. 37 - What is the ideal sequence for pressure...
Ch. 37 - Why do the resistance-welding conditions become...Ch. 37 - What magnitude of current might be required to...Ch. 37 - What are some of the changes that can occur in...Ch. 37 - What is the simplest and most widely used form of...Ch. 37 - What is the typical size of a spot-weld nugget?Ch. 37 - What are the two basic types of stationary...Ch. 37 - What is the major advantage of spot-welding guns?Ch. 37 - What are the pros and cons of a resistance spot...Ch. 37 - What are some of the properties that must be...Ch. 37 - What is the most common metal that is spot welded?Ch. 37 - What is the practical limit of the thicknesses of...Ch. 37 - What design features can be altered to permit the...Ch. 37 - What are the two methods used to produce...Ch. 37 - For what products would resistance butt welding be...Ch. 37 - What two limitations of spot welding can be...Ch. 37 - What limits the number of projection welds that...Ch. 37 - What are some of the attractive features of...Ch. 37 - What are some of the primary limitations to the...Ch. 37 - What type of metallurgical problem might be...Ch. 37 - What were some of the limitations that made the...Ch. 37 - What features promote coalescence in cold welding?Ch. 37 - Describe how the roll-bonding process can be used...Ch. 37 - Describe the friction welding process.Ch. 37 - How is inertia welding similar to friction...Ch. 37 - How are surface impurities removed in the...Ch. 37 - Why are inertia welds of more consistent quality...Ch. 37 - What are some of the geometric limitations of...Ch. 37 - How does linear friction welding differ from...Ch. 37 - How does friction-stir welding differ from...Ch. 37 - What are the primary process variables in...Ch. 37 - What are some of the attractive features of...Ch. 37 - What are some of the materials that have been...Ch. 37 - What is the benefit of adding a preheat laser to...Ch. 37 - Describe the friction-stir spot welding process.Ch. 37 - Prob. 45RQCh. 37 - How do ultrasonic vibrations produce a weld?Ch. 37 - What are some of the geometric limitations of...Ch. 37 - What are some of the attractive features of...Ch. 37 - What are the conditions necessary to produce...Ch. 37 - What kinds of materials can be joined by diffusion...Ch. 37 - How might intermediate layers be used to enhance...Ch. 37 - How are surface contaminants removed during...Ch. 37 - If the interface of a weld is viewed in cross...Ch. 37 - What are some typical applications of explosive...Ch. 37 - Many advanced engineering products, as well as...Ch. 37 - Using the Internet or technical literature,...Ch. 37 - Friction-stir processing is an interesting...Ch. 37 - Investigate the various types of power supplies...Ch. 37 - Consider a muffler being made entirely from...Ch. 37 - Prob. 2CSCh. 37 - Prob. 3CSCh. 37 - An alternate material might be one-side...Ch. 37 - Prob. 5CS
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
ICA 2-1
For each of the following situations, indicate whether you think the action is ethical or unethical or ...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
A variable that is visible to every module in the program is a _____. a. local variable b. universal variable c...
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
What does event-driven mean?
Starting Out With Visual Basic (8th Edition)
What sequence of events do you think would be required to move the contents of one memory cell in a computer to...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
1.2 Explain the difference between geodetic and plane
surveys,
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Write a program segment that defines a file stream object named employees. The file should be opened for both i...
Starting Out with C++ from Control Structures to Objects (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Solve the IVP. a. y" 16y 17e* ; = y(0) = 6, y'(0) = -2 b. (D² + 41)y = sin(t) + ½ sin(3t) + sin(t) ; y(0) = 0, y'(0) : = 35 31arrow_forwardFind the general solution. a. y' 5y = 3ex - 2x + 1 - b. y" +4y' + 4y = e¯*cos(x) c. (D² + I)y = cos(wt), w² # 1arrow_forwardhandwritten solutions, please!!arrow_forward
- > Homework 4 - Spring 2025.pdf Spring 2025.pdf k 4 - Spring 2025.pdf (447 KB) Due: Thursday, February 27 Page 1 > of 2 ZOOM 1. A simply supported shaft is shown in Figure 1 with wo = 25 N/cm and M = 20 N cm. Use singularity functions to determine the reactions at the supports. Assume EI = 1000 kN cm². M Wo 0 10 20 30 40 50 60 70 80 90 100 110 cm Figure 1 - Problem 1 2. A support hook was formed from a rectangular bar. Find the stresses at the inner and outer surfaces at sections just above and just below O-B. 210 mmarrow_forwardA distillation column with a total condenser and a partial reboiler is separating ethanol andwater at 1.0 atm. Feed is 0.32 mol fraction ethanol and it enters as a saturated liquid at 100mol/s on the optimum plate. The distillate product is a saturated liquid with 80 mol% ethanol.The condenser removes 5615 kW. The bottoms product is 0.05 mol fraction ethanol. AssumeCMO is valid.(a) Find the number of equilibrium stages for this separation. [6 + PR](b) Find how much larger the actual reflux ratio, R, used is than Rmin, i.e. R/Rmin. [3]Note: the heats of vaporization of ethanol and water are λe = 38.58 and λw = 40.645 arrow_forwardWe have a feed that is a binary mixture of methanol and water (60.0 mol% methanol) that issent to a system of two flash drums hooked together. The vapor from the first drum is cooled,which partially condenses the vapor, and then is fed to the second flash drum. Both drumsoperate at 1.0 atm and are adiabatic. The feed to the first drum is 1000 kmol/hr. We desire aliquid product from the first drum that is 35.0 mol% methanol. The second drum operates at afraction vaporized of (V/F)2 = 0.25.(a) Find the liquid flow rate leaving the first flash drum, L1 (kmol/hr). [286 kmol/hr](b) Find the vapor composition leaving the second flash drum, y2. [0.85]arrow_forward
- = The steel curved bar shown has rectangular cross-section with a radial height h = 6 mm and thickness b = 4mm. The radius of the centroidal axis is R = 80 mm. A force P = 10 N is applied as shown. Assume the steel modulus of 207,000 MPa and G = 79.3(103) MPa, repectively. elasticity and shear modulus E = Find the vertical deflection at point B. Use Castigliano's method for a curved flexural member and since R/h > 10, neglect the effect of shear and axial load, thereby assuming that deflection is due to merely the bending moment. Note the inner and outer radii of the curves bar are: r = 80 + ½ (6) = 83 mm, r₁ = 80 − ½ (6) = 77 mm 2 2 Sπ/2 sin² 0 d = √π/² cos² 0 d0 = Π 0 4 大 C R B Parrow_forwardThe steel eyebolt shown in the figure is loaded with a force F = 75 lb. The eyebolt is formed from round wire of diameter d = 0.25 in to a radius R₁ = 0.50 in in the eye and at the shank. Estimate the stresses at the inner and outer surfaces at section A-A. Notice at the section A-A: r₁ = 0.5 in, ro = 0.75 in rc = 0.5 + 0.125 = 0.625 in Ri 200 F FAarrow_forwardI have the fallowing question and solution from a reeds naval arc book. Im just confused as to where this answer came from and the formulas used. Wondering if i could have this answer/ solution broken down and explained in detail. A ship of 7000 tonne displacement has a waterplane areaof 1500 m2. In passing from sea water into river water of1005 kg/m3 there is an increase in draught of 10 cm. Find the Idensity of the sea water. picture of the "answer" is attachedarrow_forward
- Problem A2 long steel tube has a rectangular cross-section with outer dimensions of 20 x 20 mm and a uniform wall thickness of 2. The tube is twisted along its length with torque, T. The tube material is 1045 CD steel with shear yield strength of S,, =315 MPa. Assume shear modulus, G = 79.3GPa. (a) Estimate the maximum torque that can be applied without yielding (b) Estimate the torque required to produce 5 degrees total angle of twist over the length of the tube. (c) What is the maximum torque that can be applied without yielding, if a solid rectangular shaft with dimensions of 20 x 20 is used? You may use the exact solution.arrow_forwardA simply supported beam is loaded as shown. Considering symmetry, the reactions at supports A and B are R₁ = R₂ = wa 2 Using the singularity method, determine the shear force V along the length of the beam as a function of distance x from the support A. A B Ir. 2a За W C R₁₂ x 2. Using the singularity method, determine the bending M along the length of the beam as a function of distance x, from the support A. 3. Using the singularity method, determine the beam slope and deflection along the length of the beam as a function of the distance x, from the support A. Assume the material modulus of elasticity, E and the moment of inertia of the beam cross-section, I are given.arrow_forwardA steel tube, 2 m long, has a rectangular cross-section with outer dimensions of 20 × 30 mm and a uniform wall thickness of 1 mm. The tube is twisted along its length with torque, T. The tube material is 1018 CD steel with shear yield strength of Ssy =185 MPa. Assume shear modulus, G = 79.3GPa. (a) Estimate the maximum torque that can be applied without yielding.- (b) Estimate the torque required to produce 3 degrees total angle of twist over the length of the tube. (c) What is the maximum torque that can be applied without yielding, if a solid rectangular shaft with dimensions of 20 x 30 mm is used? You may use the exact solution:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY