Fundamentals of Physics
10th Edition
ISBN: 9781118230718
Author: David Halliday
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 36, Problem 5Q
Figure 36-32 shows four choices for the rectangular opening of a source of either sound waves or light waves. The sides have lengths of either L or 2L, with L being 3.0 times the wavelength of the waves. Rank the openings according to the extent of (a) left–right spreading and (b) up–down spreading of the waves due to diffraction, greatest first.
Figure 36-32 Question 5.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assuming that Eq. 37-36 holds, find how fast you would have to go through a red light to have it appear green. Take 620 nm as the wavelength of red light and 540 nm as the wavelength of green light.
A spherical object of radius 10.5 cm is heated to a certain temperature. After examing its emission spectrum, it is found that the maximum intensity light has wavelength 800 nm.
(A) Temperature of the object
(B) Net rate of heat radiation by it if the outside temperature is 39.50 C (emissitivity 0.75)
63 In Fig. 33-60, light enters a 90°
triangular prism at point P with inci-
dent angle 0, and then some of it
refracts at point Q with an angle of
refraction of 90°. (a) What is the in-
dex of refraction of the prism in
terms of 0? (b) What, numerically,
Air
Q
Figure 33-60 Problem 63.
is the maximum value that the index of refraction can have? Does
light emerge at Q if the incident angle at P is (c) increased slightly
and (d) decreased slightly?
Chapter 36 Solutions
Fundamentals of Physics
Ch. 36 - You are conducting a single-slit diffraction...Ch. 36 - In a single-slit diffraction experiment, the top...Ch. 36 - For three experiments, Fig. 36-30 gives the...Ch. 36 - For three experiments, Fig. 36-31 gives versus...Ch. 36 - Figure 36-32 shows four choices for the...Ch. 36 - Prob. 6QCh. 36 - At night many people see rings called entoptic...Ch. 36 - a For a given diffraction grating, does the...Ch. 36 - Figure 36-33 shows a red line and a green line of...Ch. 36 - For the situation of Question 9 and Fig. 36-33, if...
Ch. 36 - a Figure 36-34a shows the lines produced by...Ch. 36 - Figure 36-35 shows the bright fringes that lie...Ch. 36 - In three arrangements you view two closely spaced...Ch. 36 - For a certain diffraction grating, the ratio /a of...Ch. 36 - GO The distance between the first and fifth minima...Ch. 36 - What must be the ratio of the slit width to the...Ch. 36 - A plane wave of wavelength 590 nm is incident on a...Ch. 36 - In conventional television, signals are broadcast...Ch. 36 - A single slit is illuminated by light of...Ch. 36 - Monochromatic light of wavelength 441 nm is...Ch. 36 - Light of wavelength 633 nm is incident on a narrow...Ch. 36 - Sound waves with frequency 3000 Hz and speed 343...Ch. 36 - SSM ILW A slit 1.00 mm wide is illuminated by...Ch. 36 - GO Manufacturers of wire and other objects of...Ch. 36 - A 0.10-mm-wide slit is illuminated by light of...Ch. 36 - Figure 36-38 gives versus the sine of the angle ...Ch. 36 - Monochromatic light with wavelength 538 nm is...Ch. 36 - In the single-slit diffraction experiment of Fig....Ch. 36 - SSM WWW The full width at half-maximum FWHM of a...Ch. 36 - Babinets principle. A monochromatic beam of...Ch. 36 - a Show that the values of a at which intensity...Ch. 36 - The wall of a large room is covered with acoustic...Ch. 36 - a How far from grains of red sand must you be to...Ch. 36 - The radar system of a navy cruiser transmits at a...Ch. 36 - SSM WWW Estimate the linear separation of two...Ch. 36 - Prob. 22PCh. 36 - SSM The two headlights of an approaching...Ch. 36 - Entoptic halos. If someone looks at a bright...Ch. 36 - ILW Find the separation of two points on the Moons...Ch. 36 - The telescopes on some commercial surveillance...Ch. 36 - If Superman really had x-ray vision at 0.10 nm...Ch. 36 - GO The wings of tiger beetles Fig. 36-41 are...Ch. 36 - a What is the angular separation of two stars if...Ch. 36 - GO Floaters. The floaters you see when viewing a...Ch. 36 - SSM Millimeter-wave radar generates a narrower...Ch. 36 - a A circular diaphragm 60 cm in diameter...Ch. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Suppose that the central diffraction envelope of a...Ch. 36 - A beam of light of a single wavelength is incident...Ch. 36 - In a double-slit experiment, the slit separation d...Ch. 36 - In a certain two-slit interference pattern, 10...Ch. 36 - Light of wavelength 440 nm passes through a double...Ch. 36 - GO Figure 36-45 gives the parameter of Eq. 36-20...Ch. 36 - GO In the two-slit interference experiment of Fig....Ch. 36 - GO a In a double-slit experiment, what largest...Ch. 36 - SSM WWW a How many bright fringes appear between...Ch. 36 - Perhaps to confuse a predator, some tropical...Ch. 36 - A diffraction grating 20.0 mm wide has 6000...Ch. 36 - Visible light is incident perpendicularly on a...Ch. 36 - SSM ILW A grating has 400 lines/mm. How many...Ch. 36 - A diffraction grating is made up of slits of width...Ch. 36 - SSM WWW Light of wavelength 600 nm is incident...Ch. 36 - With light from a gaseous discharge tube incident...Ch. 36 - GO A diffraction grating having 180 lines/mm is...Ch. 36 - GO A beam of light consisting of wavelengths from...Ch. 36 - Prob. 53PCh. 36 - Derive this expression for the intensity pattern...Ch. 36 - SSM ILW A source containing a mixture of hydrogen...Ch. 36 - a How many rulings must a 4.00-cm-wide diffraction...Ch. 36 - Light at wavelength 589 nm from a sodium lamp is...Ch. 36 - A grating has 600 rulings/mm and is 5.0 mm wide. a...Ch. 36 - A diffraction grating with a width of 2.0 cm...Ch. 36 - Prob. 60PCh. 36 - With a particular grating the sodium doublet...Ch. 36 - A diffraction grating illuminated by monochromatic...Ch. 36 - Assume that the limits of the visible spectrum are...Ch. 36 - What is the smallest Bragg angle for x rays of...Ch. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - If first-order reflection occurs in a crystal at...Ch. 36 - X rays of wavelength 0.12 nm are found to undergo...Ch. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Consider a two-dimensional square crystal...Ch. 36 - An astronaut in a space shuttle claims she can...Ch. 36 - SSM Visible light is incident perpendicularly on a...Ch. 36 - A beam of light consists of two wavelengths,...Ch. 36 - SSM In a single-slit diffraction experiment, there...Ch. 36 - GO A double-slit system with individual slit...Ch. 36 - SSM A diffraction grating has resolving power R =...Ch. 36 - The pupil of a persons eye has a diameter of 5.00...Ch. 36 - Prob. 81PCh. 36 - A grating with d = 1.50 m is illuminated at...Ch. 36 - SSM In two-slit interference, if the slit...Ch. 36 - GO In a two-slit interference pattern, what is the...Ch. 36 - A beam of light with a narrow wavelength range...Ch. 36 - If you look at something 40 m from you, what is...Ch. 36 - Two yellow flowers are separated by 60 cm along a...Ch. 36 - In a single-slit diffraction experiment, what must...Ch. 36 - A diffraction grating 3.00 cm wide produces the...Ch. 36 - A single-slit diffraction experiment is set up...Ch. 36 - A diffraction grating has 8900 slits across 1.20...Ch. 36 - In an experiment to monitor the Moons surface with...Ch. 36 - In June 1985, a laser beam was sent out from the...Ch. 36 - A diffraction grating 1.00 cm wide has 10 000...Ch. 36 - SSM If you double the width of a single slit, the...Ch. 36 - When monochromatic light is incident on a slit...Ch. 36 - A spy satellite orbiting at 160 km above Earths...Ch. 36 - Suppose that two points are separated by 2.0 cm....Ch. 36 - A diffraction grating has 200 lines/mm. Light...Ch. 36 - A diffraction grating has 200 rulings/mm, and it...Ch. 36 - Prob. 101PCh. 36 - Monochromatic light wavelength = 450 nm is...Ch. 36 - Light containing a mixture of two wavelengths, 500...Ch. 36 - Prob. 104PCh. 36 - Show that a grating made up of alternately...Ch. 36 - Light of wavelength 500 nm diffracts through a...Ch. 36 - If, in a two-slit interference pattern, there are...Ch. 36 - White light consisting of wavelengths from 400 nm...Ch. 36 - If we make d = a in Fig. 36-50, the two slits...Ch. 36 - Derive Eq. 36-28, the expression for the...Ch. 36 - Prob. 111PCh. 36 - How many orders of the entire visible spectrum...Ch. 36 - An acoustic double-slit system of slit separation...Ch. 36 - Two emission lines have wavelengths and ,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
Your microbiology lab maintains reference bacterial cultures, which are regularly transferred to new nutrient a...
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
18. Which types of muscular tissue are striated? Which is smooth?
Principles of Anatomy and Physiology
Calculate the gradient, or slope, of this portion of the Missouri River by following the steps below: Step 1: L...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forwardD,E,Farrow_forwardTwo interfering light waves have intensities of 20\,W\,m−2 and 40\,W\,m−2, and the phase difference between them at some point P is π/3. The intensity at P, in W m−2−2, including interference is:(give your answer as a decimal to 1 d.p. )arrow_forward
- 79 SSM (a) Prove that a ray of light incident on the surface of a sheet of plate glass of thickness t emerges from the opposite face parallel to its initial direction but displaced sideways, as in Fig. 33-69. (b) Show that, for small angles of incidence 0, this displacement is given by п - 1 x = te- п where n is the index of refraction of the glass and e is measured in radians. Figure 33-69 Problem 79.arrow_forwardTwo interfering light waves have intensities of 20,W,m−2 and 40,W,m−2 , and the phase difference between them at some point P is π/3 . The intensity at P, in W m−2 , including interference is:(give your answer as a decimal to 1.d.p.)arrow_forward12 In Fig. 33-35, light travels from material a, through three layers of other materials with surfaces parallel to one another, and then back into an- other layer of material a. The refrac- tions (but not the associated reflec- tions) at the surfaces are shown. Rank the materials according to index of re- fraction, greatest first. (Hint: The par- allel arrangement of the surfaces al- lows comparison.) Figure 33-35 Question 12.arrow_forward
- 40 0 In Fig. 33-42, unpolarized light is sent into a system of three polarizing sheets. The angles 61, 62, and 6, of the polariz- ing directions are measured counterclockwise from the positive direction of the y axis (they are not drawn to scale). Angles 0, and 0z are fixed, but angle 6, can be varied. Figure 33-44 gives the intensity of the light emerging from sheet 3 as a function of 6. (The scale of the intensity axis is not indicated.) What percentage of the light's initial intensity is transmitted by the three-sheet system when 0, = 90°? 0° 60° 120° 180° Figure 33-44 Problem 40.arrow_forwardA metallic sphere A of radius 'R' is completely enclosed by a metallic spherical shell 'B' (made up of same material) of inner radius '2R' and outer radius '4R'. Outer surface of B is highly polished and is perfectly reflecting. Inner surface of 'B' and outer surface of 'A' behave like black bodies. Initially A is emitting radiations of maximum intensity near wavelength 2 and B is emitting radiations of maximum intensity near wavelength 62. After sufficiently long time, both will emit radiations of maximum intensity corresponding 5. 19X E2. Find X. 31 to wavelengtharrow_forwardChapter 33, Problem 003 From the figure, approximate the (a) smaller and (b) larger wavelength at which the eye of a standard observer has half the eye's maximum sensitivity. What are the (c) wavelength, (d) frequency, and (e) period of the light at which the eye is the most sensitive? 100 80 60 40 20 400 450 5000 550 600 650 700 Wavelength (nm) (a) Number 1 Units (b) Number +2 Units (c) Number -3 Units (d) Number 1+4 Units (e) Number 1+5 Units Relative sensitivityarrow_forward
- 14 GO A light detector has an ab- E (n) sorbing area of 2.00 x 10-6 m2 and absorbs 50% of the incident light, E, which is at wavelength 600 nm. The detector faces an isotropic source, 12.0 m from the source. The energy E emitted by the source versus time t is given in Fig. 38-26 (E, = 7.2 nJ, t, = 2.0 s). At what rate are photons o absorbed by the detector? t (s) Figure 38-26 Problem 14.arrow_forward10 mW of light is incident on a piece of GaAs which is 0.2mm thick. The incident light is a mixture of 5mW at A1=1.553µm and 5mW at 12=0.828um. A total of 7mW mixed light exits out of the GaAs. Assume no reflections at the air/GaAs interface and any light generated by recombination won't exit the GaAs. What are the absorption coefficients, a, for two different wavelengths?arrow_forward*67 O In the ray diagram of Fig. 33-63, where the angles are not drawn to scale, the ray is incident at the critical angle on the inter- face between materials 2 and 3. Angle o = 60.0°, and two of the in- dexes of refraction are n = 1.70 and n2 = 1.60. Find (a) index of refraction n3 and (b) angle 0. (c) If øi decreased, does light refract into material 3? Figure 33-63 Problem 67.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY