Fundamentals of Physics
10th Edition
ISBN: 9781118230718
Author: David Halliday
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 36, Problem 20P
The radar system of a navy cruiser transmits at a wavelength of 1.6 cm, from a circular antenna with a diameter of 2.3 m. At a range of 6.2 km, what is the smallest distance that two speedboats can be from each other and still be resolved as two separate objects by the radar system?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A Tv broadcast station has a transmitting antenna loacated 20m above the ground. What is the height above the ground of the receibing antenna 30km from the transmitter?
Given once SpaceX's StarLink can provide global internet by sending light between satellites in
space, what is the expected time delay for a Whatsapp call from Indianapolis to London which is
about 6416 km apart? In other words, how long does light need to travel between Indianapolis and
London?
µs = 1 × 10¬°s, ms = 1 × 10¬³s
tdelay = 2.14µs
tdelay = 2.14ms
%3D
tdelay = 214µs
O tdelay = 2.14s
%3D
Help
Chapter 36 Solutions
Fundamentals of Physics
Ch. 36 - You are conducting a single-slit diffraction...Ch. 36 - In a single-slit diffraction experiment, the top...Ch. 36 - For three experiments, Fig. 36-30 gives the...Ch. 36 - For three experiments, Fig. 36-31 gives versus...Ch. 36 - Figure 36-32 shows four choices for the...Ch. 36 - Prob. 6QCh. 36 - At night many people see rings called entoptic...Ch. 36 - a For a given diffraction grating, does the...Ch. 36 - Figure 36-33 shows a red line and a green line of...Ch. 36 - For the situation of Question 9 and Fig. 36-33, if...
Ch. 36 - a Figure 36-34a shows the lines produced by...Ch. 36 - Figure 36-35 shows the bright fringes that lie...Ch. 36 - In three arrangements you view two closely spaced...Ch. 36 - For a certain diffraction grating, the ratio /a of...Ch. 36 - GO The distance between the first and fifth minima...Ch. 36 - What must be the ratio of the slit width to the...Ch. 36 - A plane wave of wavelength 590 nm is incident on a...Ch. 36 - In conventional television, signals are broadcast...Ch. 36 - A single slit is illuminated by light of...Ch. 36 - Monochromatic light of wavelength 441 nm is...Ch. 36 - Light of wavelength 633 nm is incident on a narrow...Ch. 36 - Sound waves with frequency 3000 Hz and speed 343...Ch. 36 - SSM ILW A slit 1.00 mm wide is illuminated by...Ch. 36 - GO Manufacturers of wire and other objects of...Ch. 36 - A 0.10-mm-wide slit is illuminated by light of...Ch. 36 - Figure 36-38 gives versus the sine of the angle ...Ch. 36 - Monochromatic light with wavelength 538 nm is...Ch. 36 - In the single-slit diffraction experiment of Fig....Ch. 36 - SSM WWW The full width at half-maximum FWHM of a...Ch. 36 - Babinets principle. A monochromatic beam of...Ch. 36 - a Show that the values of a at which intensity...Ch. 36 - The wall of a large room is covered with acoustic...Ch. 36 - a How far from grains of red sand must you be to...Ch. 36 - The radar system of a navy cruiser transmits at a...Ch. 36 - SSM WWW Estimate the linear separation of two...Ch. 36 - Prob. 22PCh. 36 - SSM The two headlights of an approaching...Ch. 36 - Entoptic halos. If someone looks at a bright...Ch. 36 - ILW Find the separation of two points on the Moons...Ch. 36 - The telescopes on some commercial surveillance...Ch. 36 - If Superman really had x-ray vision at 0.10 nm...Ch. 36 - GO The wings of tiger beetles Fig. 36-41 are...Ch. 36 - a What is the angular separation of two stars if...Ch. 36 - GO Floaters. The floaters you see when viewing a...Ch. 36 - SSM Millimeter-wave radar generates a narrower...Ch. 36 - a A circular diaphragm 60 cm in diameter...Ch. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Suppose that the central diffraction envelope of a...Ch. 36 - A beam of light of a single wavelength is incident...Ch. 36 - In a double-slit experiment, the slit separation d...Ch. 36 - In a certain two-slit interference pattern, 10...Ch. 36 - Light of wavelength 440 nm passes through a double...Ch. 36 - GO Figure 36-45 gives the parameter of Eq. 36-20...Ch. 36 - GO In the two-slit interference experiment of Fig....Ch. 36 - GO a In a double-slit experiment, what largest...Ch. 36 - SSM WWW a How many bright fringes appear between...Ch. 36 - Perhaps to confuse a predator, some tropical...Ch. 36 - A diffraction grating 20.0 mm wide has 6000...Ch. 36 - Visible light is incident perpendicularly on a...Ch. 36 - SSM ILW A grating has 400 lines/mm. How many...Ch. 36 - A diffraction grating is made up of slits of width...Ch. 36 - SSM WWW Light of wavelength 600 nm is incident...Ch. 36 - With light from a gaseous discharge tube incident...Ch. 36 - GO A diffraction grating having 180 lines/mm is...Ch. 36 - GO A beam of light consisting of wavelengths from...Ch. 36 - Prob. 53PCh. 36 - Derive this expression for the intensity pattern...Ch. 36 - SSM ILW A source containing a mixture of hydrogen...Ch. 36 - a How many rulings must a 4.00-cm-wide diffraction...Ch. 36 - Light at wavelength 589 nm from a sodium lamp is...Ch. 36 - A grating has 600 rulings/mm and is 5.0 mm wide. a...Ch. 36 - A diffraction grating with a width of 2.0 cm...Ch. 36 - Prob. 60PCh. 36 - With a particular grating the sodium doublet...Ch. 36 - A diffraction grating illuminated by monochromatic...Ch. 36 - Assume that the limits of the visible spectrum are...Ch. 36 - What is the smallest Bragg angle for x rays of...Ch. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - If first-order reflection occurs in a crystal at...Ch. 36 - X rays of wavelength 0.12 nm are found to undergo...Ch. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Consider a two-dimensional square crystal...Ch. 36 - An astronaut in a space shuttle claims she can...Ch. 36 - SSM Visible light is incident perpendicularly on a...Ch. 36 - A beam of light consists of two wavelengths,...Ch. 36 - SSM In a single-slit diffraction experiment, there...Ch. 36 - GO A double-slit system with individual slit...Ch. 36 - SSM A diffraction grating has resolving power R =...Ch. 36 - The pupil of a persons eye has a diameter of 5.00...Ch. 36 - Prob. 81PCh. 36 - A grating with d = 1.50 m is illuminated at...Ch. 36 - SSM In two-slit interference, if the slit...Ch. 36 - GO In a two-slit interference pattern, what is the...Ch. 36 - A beam of light with a narrow wavelength range...Ch. 36 - If you look at something 40 m from you, what is...Ch. 36 - Two yellow flowers are separated by 60 cm along a...Ch. 36 - In a single-slit diffraction experiment, what must...Ch. 36 - A diffraction grating 3.00 cm wide produces the...Ch. 36 - A single-slit diffraction experiment is set up...Ch. 36 - A diffraction grating has 8900 slits across 1.20...Ch. 36 - In an experiment to monitor the Moons surface with...Ch. 36 - In June 1985, a laser beam was sent out from the...Ch. 36 - A diffraction grating 1.00 cm wide has 10 000...Ch. 36 - SSM If you double the width of a single slit, the...Ch. 36 - When monochromatic light is incident on a slit...Ch. 36 - A spy satellite orbiting at 160 km above Earths...Ch. 36 - Suppose that two points are separated by 2.0 cm....Ch. 36 - A diffraction grating has 200 lines/mm. Light...Ch. 36 - A diffraction grating has 200 rulings/mm, and it...Ch. 36 - Prob. 101PCh. 36 - Monochromatic light wavelength = 450 nm is...Ch. 36 - Light containing a mixture of two wavelengths, 500...Ch. 36 - Prob. 104PCh. 36 - Show that a grating made up of alternately...Ch. 36 - Light of wavelength 500 nm diffracts through a...Ch. 36 - If, in a two-slit interference pattern, there are...Ch. 36 - White light consisting of wavelengths from 400 nm...Ch. 36 - If we make d = a in Fig. 36-50, the two slits...Ch. 36 - Derive Eq. 36-28, the expression for the...Ch. 36 - Prob. 111PCh. 36 - How many orders of the entire visible spectrum...Ch. 36 - An acoustic double-slit system of slit separation...Ch. 36 - Two emission lines have wavelengths and ,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. The lipid portion of a typical bilayers is about 30 A0 thick.
a. Calculate the minimum number of residues in...
Biochemistry: Concepts and Connections (2nd Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
What are the three main parts of a typical vertebra?
Principles of Anatomy and Physiology
Why are mutants used as test organisms in the Ames test?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Approximately how many feet is the Missouri River above sea level? Height above sea level: _________ feet
Applications and Investigations in Earth Science (9th Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two radio antennas separated by d = 275 m simultaneously broadcast identical signals at the same wavelength. A car travels due north along a straight line at position x = 548 m from the center point between the antennas, and its radio receives the signals. If the car is at the position of the 3rd maximum after that at point O when it has traveled a distance y = 403 m northward, what is the wavelength of the signals? Note: Do not use the small-angle approximation in this problem. To continue enter the result in m. Round your answer to 0 decimal placesarrow_forwardYou are working on a project to plot the course of a spy satellite. The satellite has a polar orbit (which means it passes over both of Earth's poles during each orbit), and it is outfitted with a camera carrying a wide-angle lens that can "see" strips of land up to 2100 km wide. The enemy is believed to have chosen an elevation of orbit that just guarantees complete coverage of Earth each day by these surveillance strips. You cannot avoid or block the satellite unless you know where it is. Calculate a height of the satellite's orbit above the surface of Earth.arrow_forwardTwo light sources of identical strength are placed 10m apart. An object is to be placed at a point P on a line l, parallel to the line joining the light sources and at a distance d meters from it (see the figure). We want to locate P on, so that the intensity of illumination is minimized. We need to use the fact that the intensity of illumination for a single source is directly proportional to the strength of the source and inversely proportional to the square of the distance from the source. a) Find an expression for the intensity l(x) at the point P. b) If d = 5m, use graphs of l(x) and l'(x) to show that the intensity is minimized when x = 5m, that is, when P is at the midpoint of l. c) If d = 10m, show that the intensity (perhaps surprisingly) is not minimized at the midpoint. d) Somewhere between d = 5m and d = 10m there is a transitional value of d at which the point of minimal illumination abruptly changes. Estimate this value of d by graphical methods. Then find the exact value…arrow_forward
- Consider a road that runs parallel to the line connecting a pair of radio towers that transmit the same station (assume that their transmissions are synchronized), which has an AM frequency of 1000 kilohertz. If the road is 5 kilometers from the towers and the towers are separated by 400 meters, find the angle θ to the first point of minimum signal (m=0). Hint: A frequency of 1000 kilohertz corresponds to a wavelength of 300 meters for radio waves.arrow_forwardFrom your spacecraft at Mars, a basalt lava flow is 315 km below. a) What is the range delay time of the reflection caused by the ground? b) After moving along track in your orbit, the lava flow is still 315 km below, but there is now 80 m of ice (ɛ=3.15) on top of the ground. What is the new range delay time of the lava reflection? c) Does the returned signal return earlier or later than if there were no ice present? Why? 5:arrow_forwardA radio station has two antennas. The antennas are a distance d apart, where d equals half the broadcast wavelength. The antennas are driven in phase with each other. Let the x-axis be the line that runs through the two antennas. The angles are all measured counterclockwise from the +x-direction. (For the following, assume an observer is positioned a distance D far from the midpoint of the antennas, so that D ≫ d.) (a) In which directions is the strongest signal radiated? 0°, 180° 90°, 270° 0°, 90°, 180°, 270° 45°, 135°, 225°, 315° (b) In which directions is the weakest signal radiated? 0°, 180° 90°, 270° 0°, 90°, 180°, 270° 45°, 135°, 225°, 315°arrow_forward
- answer is D, explain how?arrow_forwardProblem 4: Consider the 100-MHz radio waves used in an MRI device. Part (a) What is the wavelength, in meters, of these radio waves? λ = 3 Part (b) If the frequencies are swept over a ±12.5 MHz range centered on 100 MHz, what is the minimum, in meters, of the range of wavelengths emitted? λmin = Part (c) What is the maximum, in meters, of this wavelength range? λmax =arrow_forward2. A satellite orbiting the Earth is powered by photovoltaic (“solar”) panels that convertlight energy to electricity with a conversion rate of 15.0%. Telemetry from the satelliteindicates that the panels are supplying a peak power output of 3.60 kW, and the specificationsof the panels state that they have 16 m^2 of light-collecting surface area. The radius of theSun and its distance from Earth have long been known to be 6.96 ×10^8 m and 1.50 ×10^11m, respectively. Assume the Sun radiates approximately as a blackbody and calculate thesurface temperature of the Sun.arrow_forward
- Is it necessary for a transmitting antenna to be at the same height as that of the receiving antenna for line-of-sight communication? A TV transmitting antenna is 81m tall. How much service area can it cover if the receiving antenna is at the ground level?arrow_forwardA circular radar antenna on a Coast Guard ship has a diameter of 2.10 m and radiates at a frequency of 18.0 GHz. Two small boats are located 5.00 km away from the ship. How close together could the boats be and still be detected as two objects?arrow_forward(b) Calculate the output Vout across points C and D in Fig. Q1(b). R1 802 R3 4802 100V i Vout D R2 1202 R4 1602 Fig. Q1(b)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY