Fundamentals of Physics
10th Edition
ISBN: 9781118230718
Author: David Halliday
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 88P
Light of wavelength 700.0 nm is sent along a route of length 2000 nm. The route is then filled with a medium having an index of refraction of 1.400. In degrees, by how much does the medium phase- shift the light? Give (a) the full shift and (b) the equivalent shift that has a value less than 360°.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Light of wavelength 700.0 nm is sent along a route of length 2000 nm.The route is then filled with a medium having an index of refraction of 1.400. In degrees, by how much does the medium phase-shift the light? Give (a) the full shift and (b) the equivalent shift that has a value less than 360°.
A ray of light consisting of blue light (wavelength 480 nm) and red light
(wavelength 670 nm) is incident on a thick piece of glass at 80°. What is
the angular separation between the refracted red and refracted blue
beams while they are in the glass? (The respective indices of refraction
for the blue light and the red light are 1.4636 and 1.4561.)
O 0.27°
0.33°
O 0.36°
O 0.46°
O 0.54°
A light beam strikes a piece of glass with an incident angle of 45.00°. The beam contains two colors: 450.0 nm and an unknown
wavelength. The index of refraction for the 450.0-nm light is 1.482. Assume the glass is surrounded by air, which has an index of
refraction of 1.000.
Determine the index of refraction n, for the unknown
wavelength if its refraction angle is 0.6950° greater than that
of the 450.0 nm light.
Chapter 35 Solutions
Fundamentals of Physics
Ch. 35 - Does the spacing between fringes in a two-slit...Ch. 35 - a If you move from one bright fringe in a two-slit...Ch. 35 - Figure 35-22 shows two light rays that are...Ch. 35 - In Fig. 35-23, three pulses of lighta, b, and cof...Ch. 35 - Is there an interference maximum, a minimum, an...Ch. 35 - Figure 35-24a gives intensity I verus position x...Ch. 35 - Figure 35-25 shows two sources S1 and S2 that emit...Ch. 35 - Figure 35-26 shows two rays of light, of...Ch. 35 - Light travels along the length of a 1500-nm-long...Ch. 35 - Figure 35-27a shows the cross section of a...
Ch. 35 - Figure 35-28 shows four situations in which light...Ch. 35 - Figure 35-29 shows the transmission of light a...Ch. 35 - Figure 15-30 shows three situations in which two...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - SSM In Fig 35-4, assume that two waves of light in...Ch. 35 - In Fig. 35-32a, a beam of light in material 1 is...Ch. 35 - How much faster, in meters per second, does light...Ch. 35 - The wavelength of yellow sodium light in air is...Ch. 35 - The speed of yellow light from a sodium lamp in a...Ch. 35 - In Fig 35-33, two light pulses are sent through...Ch. 35 - In Fig. 35-4, assume that the two light waves, of...Ch. 35 - Figure 35-27a shows the cross section of a...Ch. 35 - Suppose that the two waves in Fig. 35-4 have...Ch. 35 - In Fig. 35-35, two light rays go through different...Ch. 35 - GO ILW Two waves of light in air, of wavelength =...Ch. 35 - In a double-slit arrangement the slits are...Ch. 35 - SSM A double-slit arrangement produces...Ch. 35 - A double-slit arrangement produces interference...Ch. 35 - Prob. 17PCh. 35 - In the two-slit experiment of Fig. 35-10, let...Ch. 35 - SSM ILW Suppose that Youngs experiment is...Ch. 35 - Monochromatic green light, of wavelength 550 nm,...Ch. 35 - In a double-slit experiment, the distance between...Ch. 35 - In Fig. 35-37. two isotropic point sources S1, and...Ch. 35 - Prob. 23PCh. 35 - In Fig. 35-39, two isotropic point sources S1 and...Ch. 35 - GO In Fig. 35-40, two isotropic point sources of...Ch. 35 - In a doublc-slit experiment, the fourth-order...Ch. 35 - A thin flake of mica n = 1.58 is used to cover one...Ch. 35 - Go Figure 35-40 shows I two isotropic point...Ch. 35 - Prob. 29PCh. 35 - Find the sum y of the following quantities: y1 =...Ch. 35 - ILW Add the quantities y1= 10 sin t, y2 = 15sint ...Ch. 35 - GO In the double-slit experiment of Fig. 35-10....Ch. 35 - GO Three electromagnetic waves travel through a...Ch. 35 - In Ihe double-slit experiment of Fig, 35-10, the...Ch. 35 - SSM We wish to coal flat glass n = 1.50 with a...Ch. 35 - A 600-nm-thick soap film n = 1.40 in air is...Ch. 35 - The rhinestones in costume jewelry are glass with...Ch. 35 - White light is sent downward onto a horizontal...Ch. 35 - ilw Light of wavelength 624 nm is incident...Ch. 35 - A thin film of acetone n = 1.25 coats a thick...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - The reflection of perpendicularly incident white...Ch. 35 - A plane wave of monochromatic light is incident...Ch. 35 - SSM WWW A disabled tanker leaks kerosene n = 1.20...Ch. 35 - A thin film, with a thickness of 272.7 nm and with...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - GO In Fig. 35-44, a broad beam of light of...Ch. 35 - GO In Fig. 35-45, a broad beam of light of...Ch. 35 - In Fig. 35-45, two microscope slides touch at one...Ch. 35 - In Fig. 35-45, a broad beam of monochromatic light...Ch. 35 - SSM In Fig. 35-45, a broad beam of light of...Ch. 35 - GO Two rectangular glass plates n = 1.60 are in...Ch. 35 - SSM ILW Figure 35-46a shows a lens with radius of...Ch. 35 - The lens in a Newtons rings experiment see Problem...Ch. 35 - Prob. 77PCh. 35 - A thin film of liquid is held in a horizontal...Ch. 35 - If mirror M2 in a Michelson interferometer Fig....Ch. 35 - A thin film with index of refraction n = 1.40 is...Ch. 35 - SSM WWW In Fig. 35-48, an airtight chamber of...Ch. 35 - The element sodium can emit light at two...Ch. 35 - Prob. 83PCh. 35 - GO In Figure 35-50, two isotropic point sources S1...Ch. 35 - SSM A double-slit arrangement produces bright...Ch. 35 - GO In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - SSM In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - Light of wavelength 700.0 nm is sent along a route...Ch. 35 - Prob. 89PCh. 35 - In Fig. 35-54, two isotropic point sources S1 and...Ch. 35 - Prob. 91PCh. 35 - Figure 35-56a shows two light rays that are...Ch. 35 - SSM If the distance between the first and tenth...Ch. 35 - Figure 35-57 shows an optical fiber in which a...Ch. 35 - SSM Two parallel slits are illuminated with...Ch. 35 - A camera lens with index of refraction greater...Ch. 35 - SSM Light of wavelength is used in a Michelson...Ch. 35 - In two experiments, light is to be sent along the...Ch. 35 - Figure 35-58 shows the design of a Texas arcade...Ch. 35 - A thin film suspended in air is 0.410 m thick and...Ch. 35 - Find the slit separation of a double-slit...Ch. 35 - In a phasor diagram for any point on the viewing...Ch. 35 - In Fig. 35-59, an oil drop n = 1.20 floats on the...Ch. 35 - Prob. 104PCh. 35 - The two point sources in Fig. 35-61 emit coherent...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A mixture of gases A2 and B2 are introduced to a slender metal cylinder that has one end closed and the other ...
Chemistry: The Central Science (14th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
103. What solution can you add to each cation mixture to precipitate one cation while keeping the other cation ...
Introductory Chemistry (6th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
The genotype of F1, individuals in a tetrahybrid cross is AaBbCcDd. Assuming lndependent assortment of these fo...
Campbell Biology (11th Edition)
Which name season is used to describe the June 21-22 date in each hemisphere?
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forwardK A light ray with a wavelength of 589 nanometers (produced by a sodium lamp) traveling through air makes an angle of = to find the angle of refraction, V2 sin 0₁ V₁ y incidence of 55° on a smooth, flat slab of dense flint glass. Use Snell's Law, sin 02 where the index of refraction is 1.66. ... The angle of refraction is approximately degrees. (Type an integer or decimal rounded to two decimal places as needed.)arrow_forwardIf light in air with a wavelength of 760 nm is incident upon a piece of quartz (n = 1.54) at an angle of 60°.(A) What is the angle of refraction? (B) what is the speed and frequency of this light in the quartz?arrow_forward
- A parallel beam of light containing red (660 nm) and violet (410 nm) wavelengths goes from polystyrene to water, striking the surface between them at a 56.0° incident angle. The indices of refraction for red and violet light in polystyrene are respectively 1.488 and 1.506. The index of refraction for red and violet light in water is respectively 1.331 and 1.342. What is the angle between the two colors in water?arrow_forwardWhite light is sent through an interface of a 100% (w/v) glycerol solution (n1 1.474) and a 20% (w/v) sucrose solution (n2 1.364) at an angle of O1. Incident ray Reflected ray If O1 32°, determine the angle of O2 in degrees. Refractive index = n, Refractive index = n, If O, = 0°, determine the angle of 02 in degrees. 2. Refracted ray | |arrow_forwardTwo beams of light start together and then hit a slab of two different kinds of material. This will cause one of the beams to get "ahead" of the other; that is, one will emerge from the slab sooner than the other. The beams have a wavelength of 570 nm outside the slabs, and the slab is d=2.3 μm thick. If the top half of the slab has index of refraction 1.79 and the bottom has index 1.39, by what time interval will one of the beams be ahead of the other once they've gone through the slab?arrow_forward
- A beam of light is incident at 30° on a piece of glass in air. The dispersion of colors spans 1 mm on the bottom surface of the glass. The thickness of the glass slab is l = 10 cm. The index of refraction for red light is nred = 1.513. Given nviolet > nred· Determine the index of refraction for violet light. 30 1 mm 1.546 O 1.587 1.563 1.553 1.572 O 1.591arrow_forwardLight is traveling through ethyl alcohol and the incident upon a diamond at an angle of 70° with respect to the normal line. The indices of refraction of ethyl alcohol and diamond are n (ethyl alcohol)-1.36 and n_diamond-2.41 respectively.arrow_forwardIn the figure, light from ray A refracts from material 1 (n₁ = 1.73) into a thin layer of material 2 (n2 = 1.80), crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3 (n3 = 1.40). (a) What is the value of incident angle BA? (b) If 8A is decreased, does part of the light refract into material 3? Light from ray B refracts from material 1 into the thin layer, crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3. (c) What is the value of incident angle Og? (d) If Og is decreased, does part of the light refract into material 3? OB I ng no 121arrow_forward
- For an air (n=1) and glass (n=1.45) interface, determine the % of the light reflected (reflectance) and transmitted (transmittance) for a light beam incident from air to glass with (a) incident angle = 25o and the electric field (polarization) direction is in the incident plane, (b) incident angle=25o and electric field (polarization) direction is 45o with respect to the incident plane.arrow_forwardBy what length is a light ray displaced after passing from air into (and then out of) a 4.3 cm thick sheet of material n=1.34 with an incident angle of θ=34 degrees?arrow_forwardA ray of light travelling in glass having a refractive index nlass= 1.5, is incident at an angle 0 on the glass-air interface. If a thin layer of liquid (niquid = 1.23) is poured on the glass air interface, then at what angle would the ray emerge from the liquid-air interface? air (nair) air (nair) liquid (niquid) glass (ng) glass (ng) O 48.3° 90.0° 35.7° O 45.6° O 82.5°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY