Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r 3 (the light does not reflect inside material 2) and r 4 (the light reflects twice inside material 2). The waves of r 3 and r 4 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n 1 , n 2 , and n 3 , the type of interference, the thin-layer thickness L in nanometers, and the wavelength ๐ in nanometers of the light as measured in air. Where ๐ is missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated. Figure 35-45 n 1 n 2 n 3 Type L ๐ 61 1.32 1.75 1.39 Min 325 62 1.68 1.59 1.50 Max 2nd 342 63 1.40 1.46 1.75 Max 2nd 482 64 1.40 1.46 1.75 Max 210 65 1.60 1.40 1.80 Min 2nd 632 Table 35-3: Transmission Through Thin Layers.
Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r 3 (the light does not reflect inside material 2) and r 4 (the light reflects twice inside material 2). The waves of r 3 and r 4 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n 1 , n 2 , and n 3 , the type of interference, the thin-layer thickness L in nanometers, and the wavelength ๐ in nanometers of the light as measured in air. Where ๐ is missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated. Figure 35-45 n 1 n 2 n 3 Type L ๐ 61 1.32 1.75 1.39 Min 325 62 1.68 1.59 1.50 Max 2nd 342 63 1.40 1.46 1.75 Max 2nd 482 64 1.40 1.46 1.75 Max 210 65 1.60 1.40 1.80 Min 2nd 632 Table 35-3: Transmission Through Thin Layers.
Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray
r
3
(the light does not reflect inside material 2) and
r
4
(the light reflects twice inside material 2). The waves of
r
3
and
r
4
interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction
n
1
,
n
2
, and
n
3
, the type of interference, the thin-layer thickness L in nanometers, and the wavelength ๐ in nanometers of the light as measured in air. Where ๐ is missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated.
Imagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water,ย in degrees, measured from the horizontal? You may assume the index of refraction of air isย nair=1ย and the index of refraction of water isย nwater=1.33ย . Round your answer toย three significant figures. Just enter the number, nothing else.
Deduce what overvoltage is like in reversible electrodes.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.