Concept explainers
A thin film, with a thickness of 272.7 nm and with air on both sides, is illuminated with a beam of white light. The beam is perpendicular to the film and consists of the full range of wavelengths for the visible spectrum. In the light reflected by the film, light with a wavelength of 600.0 nm undergoes fully constructive interference. At what wavelength does the reflected light undergo fully destructive interference? (Hint: You must make a reasonable assumption about the index of refraction.)
Trending nowThis is a popular solution!
Chapter 35 Solutions
Fundamentals of Physics
Additional Science Textbook Solutions
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Microbiology: An Introduction
Genetic Analysis: An Integrated Approach (3rd Edition)
Microbiology: An Introduction
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Human Anatomy & Physiology (Marieb, Human Anatomy & Physiology) Standalone Book
- White light reflects at normal incidence from the top and bottom surfaces of a glass plate 1n = 1.522. There is air above and below the plate. Constructive interference is observed for light whose wavelength in air is 477.0 nm. What is the thickness of the plate if the next longer wavelength for which there is constructive interference is 540.6 nm?arrow_forwardA thin film of glass (n 1.52) of thickness 0.420 um is viewed under white light at near normal incidence. What wavelength of visible light is most strongly reflected by the film when sur- rounded by air?arrow_forwardA thin layer of oil resides on top of motionless water. The index of refraction for the oil is 1.18 and for water is 1.33. A band of white light in air, strikes the oil layer at normal incidence. If the oil layer is 753 nm thick, the shortest wavelength of light in the visible spectrum that is most strongly reflected is nm, while the longest wavelength of light in the visible spectrum that is most strongly reflected is nm. Answer with a number rounded to only 3 digits and note that the unlts are nanometers.arrow_forward
- A bubble is formed by a soap film with index of refraction n=1.3 and a thickness of 325nm. When illuminated by white light and viewed directly (perpendicular to the surface), what wavelength in the visible spectrum (375nm to 725nm) will be strongly reflected?arrow_forwardA glass sheet is covered by a very thin opaque coating. In the middle of this sheet there is a thin scratch 0.00125 mm thick. The sheet is totally immersed beneath the surface of a liquid. Parallel rays of monochromatic coherent light with wavelength 612 nm in air strike the sheet perpendicular to its surface and pass through the scratch. A screen is placed in the liquid a distance of 30.0 cm away from the sheet and parallel to it. You observe that the first dark fringes on either side of the central bright fringe on the screen are 22.4 cm apart. What is the refractive index of the liquid?arrow_forwardIn your research lab, a very thin, flat piece of glass with refractive index 1.40 and uniform thickness covers the opening of a chamber that holds a gas sample. The refractive indexes of the gases on either side of the glass are very close to unity. To determine the thickness of the glass, you shine coherent light of wavelength l0 in vacuum at normal incidence onto the surface of the glass. When l0 = 496 nm, constructive interference occurs for light that is reflected at the two surfaces of the glass. You find that the next shorter wavelength in vacuum for which there is constructive interference is 386 nm. (a) Use these measurements to calculate the thickness of the glass. (b) What is the longest wavelength in vacuum for which there is constructive interference for the reflected light?arrow_forward
- A thin layer of liquid methylene iodide (n = 1.756) is sandwiched between two flat, parallel plates of glass (n = 1.50). What must be the thickness of the liquid layer if normally incident light with = 394 nm in air is to be strongly reflectedarrow_forwardA glass surface is coated by an oil film of uniform thickness 1.00 x 10-4 cm. The index of refraction of the oil is 1.25 and that of the glass is 1.50. Some of the wavelengths in visible region (400 nm 490 nm) are completely transmitted by the oil film under normal incidence. n x 10 One of the wavelength transmitted completely in visible region is m. Find the value 11 of n.arrow_forwardMonochromatic light of wavelength 500 nm in air is incident along a normal line to a pane of glass (n=1.5) that has a 163 nm thick transparent coating, with an index of refraction somewhere between 2.0 and 3.0. The reflected light is bright (undergoes completely constructive interference). What is the index of refraction of the coating? The mediums are air (n=1) -> coating (n=?) -> glass (n=1.5) Select one: а. 2.3 b. 2.5 с. 2.1 d. 2.7 e. 2.9arrow_forward
- One way to determine the index of refraction of a gas is to use an interferometer. As shown below, one of the beams of an interferometer passes through a glass container that has a length of L = 1.8 cm. Initially the glass container is a vacuum. When gas is slowly allowed into the container, a total of 6894 dark fringes move past the reference line. The laser has a wavelength of 635 nm (this is the wavelength when the light from the laser is moving through a vacuum). A.) Determine how many wavelengths will fit into the glass container when it is a vacuum. Since the light passes through the container twice, you need to determine how many wavelengths will fit into a glass container that has a length of 2L.number of wavelengths (vacuum) = B.) The number of dark fringes is the difference between the number of wavelengths that fit in the container (length of 2L) when it has gas and the number of wavelengths that fit in the container (length of 2L) when it is a vacuum. Use this knowledge to…arrow_forwardThere is a thin layer of acetone on the surface of the glass plate. The light, the wavelength of which can be adjusted, strikes perpendicular to the surface of the plate. The film does not reflect light at a wavelength of 600.0 nm, and the intensity of the reflected light has a maximum at a wavelength of 700.0 nm. Calculate the thickness of the acetone layer. The refractive index of acetone is 1.25arrow_forwardA thin uniform film of refractive index 1.750 is placed on a sheet of glass with a refractive index 1.50. At room temperature (22.4 °C), this film is just thick enough for light with a wavelength 580.5 nm reflected off the top of the film to be canceled by light reflected from the top of the glass. After the glass is placed in an oven and slowly heated to 176 °C, you find that the film cancels reflected light with a wavelength 588.0 nm Part A What is the coefficient of linear expansion of the film? (Ignore any changes in the refractive index of the film due to the temperature change.) Express your answer using two significant figures. α = Submit 96 ΫΠ ΑΣΦ Request Answer ? Review | Constants (°C) -¹arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning