Concept explainers
SSM WWW In Fig. 35-48, an airtight chamber of length d = 5.0 cm is placed in one of the arms of a Michelson interferometer. (The glass window on each end of the chamber has negligible thickness.) Light of wavelength λ = 500 nm is used. Evacuating the air from the chamber causes a shift of 60 bright fringes. From these data and to six significant figures, find the index of refraction of air at atmospheric pressure.
Figure 35-48 Problem 81.
Want to see the full answer?
Check out a sample textbook solutionChapter 35 Solutions
Fundamentals of Physics
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
College Physics: A Strategic Approach (3rd Edition)
Campbell Biology in Focus (2nd Edition)
Fundamentals Of Thermodynamics
Microbiology with Diseases by Body System (5th Edition)
- In the ideal double-slit experiment, when a glass-plate (refractive index 1.5) of thickness t is introduced in the path of one of the interfering beams (wavelength λ), the intensity at the position where the central maximum occurred previously remains unchanged. The minimum thickness of the glass-plate is (a) 22 (b) 22 3 (c) 1/17 3 (d) λarrow_forwardLight of free-space wavelength 20 = 0.75 um is guided by a thin planar film of thickness d=2.5 μm and refractive index ni = 1.65, surrounded by a medium of refractive index n2 =1.45. (a) Determine (i) the critical angle Oc; (ii) the numerical aperture NA; and (iii) the maximum acceptance angle ao for light originating in air (no = 1.00). (b) Determine the number of TE modes possible at this wavelength. Determine (i) the propagation angle a and (ii) the propagation constant ß of the m= 0 TE mode (you will need to find a graphical or numerical approximate solution here). (iii) What is the wavelength of this mode inside the medium, measured along the z axis? (d) (i) Determine the extinction coefficient y for the same m= O mode. (ii) At what distance into the outer medium does the field drop to 1% of its magnitude at the boundary?arrow_forwardParameters of a Dielectric Waveguide. Light of free-space wavelength X, = 0.87 um is guided by a thin planar film of width d = 2 μm and refractive index n₁ = 1.6 surrounded by a medium of refractive index n₂ = 1.4. (a) Determine the critical angle 0, and its complement c, the numerical aperture NA, and the maximum acceptance angle for light originating in air (n = 1). (b) Determine the number of TE modes. (c) Determine the bounce angle and the group velocity v of the m= 0 TE mode.arrow_forward
- An air wedge is formed using two glass plates. that are in contact along their left edge. When viewed by highly monochromatic light, there are exactly 7 dark bands in the reflected light. The air is now evacuated (with the glass plates remaining rigidly fixed) and the number of dark bands decreases to exactly 4. The index of refraction of the air (with unknown composition) is (3 significant digits):arrow_forward(a) A circular diaphragm 60 cm in diameter oscillates at a frequency of 25 kHz as an underwater source of sound used for submarine detection. Far from the source, the sound intensity is distributed as the diffraction pattern of a circular hole whose diameter equals that of the diaphragm.Take the speed of sound in water to be 1450 m/s and find the angle between the normal to the diaphragm and a line from the diaphragm to the first minimum. (b) Is there such a minimum for a source having an (audible) frequency of 1.0 kHz?arrow_forwardLight of wavelength, 1 = 0.6 µm in air is incident on a thin sheet of transparent mylar (ɛ, = 6). (a) What is the wavelength of the light in mylar? (b) What thickness (1) gives minimum reflection? (c) If the mylar thickness is instead such that BI = T/2, what is the reflection coefficient, I ? Answers: (a) 2 = _ m %3| (b) l = _m %3D (c) T =, -arrow_forward
- let a beam of x rays of wavelength 0.125 nm be incident on an NaCl crystal at angle u 45.0° to the top face of the crystal and a family of reflecting planes. Let the reflecting planes have separation d = 0.252 nm. The crystal is turned through angle f around an axis perpendicular to the plane of the page until these reflecting planes give diffraction maxima. What are the (a) smaller and (b) larger value of f if the crystal is turned clockwise and the (c) smaller and (d) larger value of f if it is turned counterclockwise?arrow_forwardTwo light sources can be adjusted to emit monochromatic light of any visible wavelength. The two sources are coherent, 2.04 mm apart, and in line with an observer, so that one source is 2.04 mm farther from the observer than the other. (a) For what visible wavelengths (380 to 750 nm) will the observer see the brightest light, owing to constructive interference? (b) How would your answers to part (a) be affected if the two sources were not in line with the observer, but were still arranged so that one source is 2.04 mm farther away from the observer than the other? (c) For what visible wavelengths will there be destructive interference at the location of the observer?arrow_forwardSS-1 Coherent light of wavelength 675 nm passes through a narrow slit of width 0.0143 mm. The diffraction pattern is projected onto a viewing screen 1.08 m away from the slit. The intensity of the light at the center of the diffraction pattern is 175 W/m². (a) Draw a picture of the of situation descried in this problem. (b) Find the width of the central bright spot on the screen, in centimeters (cm). (c) Find the distance between the center of the diffraction pattern and the m = 4 minimum on the screen, in cm. (d) What is the intensity at a point on the screen 13.5 cm from the central maximum?arrow_forward
- Light with a frequency of 453THZ shines down on a layer of oil on top of water. The index of refraction of oil is 1.47. The index of refraction of water is 1.33. Find the minimum thickness of the oil (in nanometers) if the the light is strongly reflected.arrow_forward103 In Fig. 35-59, an oil drop (n = 1.20) floats on the surface of wa- ter (n = 1.33) and is viewed from overhead when illuminated by sun- light shining vertically downward and reflected vertically upward. (a) Are the outer (thinnest) regions of the drop bright or dark? The oil film displays several spectra of colors. (b) Move from the rim inward to the third blue band and, using a wavelength of 475 nm for blue light, determine the film thickness there. (c) If the oil thickness in- creases, why do the colors gradually fade and then disappear? %3D Oil Water Figure 35-59 Problem 103.arrow_forwardConsider a thin film of thickness t = 2.30 × 10-6 m and index of refraction ng = 1.20. The film is rest- ing on a material of index of refraction ne = 1.13, and its top face is exposed to air na = 1.00. What is the shortest wavelength of visible light that will interfere destructively when incident on the film at angle Oa = 22.0° from the normal? Give your answer in nanometers, to three significant figures. [Note: you may ignore the fact that the wavelength will change upon refraction; this will only very slightly affect the answer.] ncarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning