BIO AMPHIBIAN VISION. The eyes of amphibians such as frogs have a much flatter cornea but a more strongly curved (almost spherical) lens than do the eyes of air-dwelling mammals. In mammalian eyes, the shape (and therefore the focal length) of the lens changes to enable the eye to focus at different distances. In amphibian eyes, the shape of the lens doesn’t change. Amphibians focus on objects at different distances by using specialized muscles to move the lens closer to or farther from the retina, like the focusing mechanism of a camera. In air, most frogs are nearsighted; correcting the distance vision of a typical frog in air would require contact lenses with a power of about −6.0 D. 34.108 A frog can see an insect clearly at a distance of 10 cm. At that point the effective distance from the lens to the retina is 8 mm. If the insect moves 5 cm farther from the frog, by how much and in which direction does the lens of the frog’s eye have to move to keep the insect in focus? (a) 0.02 cm, toward the retina; (b) 0.02 cm, away from the retina; (c) 0.06 cm, toward the retina; (d) 0.06 cm, away from the retina.
BIO AMPHIBIAN VISION. The eyes of amphibians such as frogs have a much flatter cornea but a more strongly curved (almost spherical) lens than do the eyes of air-dwelling mammals. In mammalian eyes, the shape (and therefore the focal length) of the lens changes to enable the eye to focus at different distances. In amphibian eyes, the shape of the lens doesn’t change. Amphibians focus on objects at different distances by using specialized muscles to move the lens closer to or farther from the retina, like the focusing mechanism of a camera. In air, most frogs are nearsighted; correcting the distance vision of a typical frog in air would require contact lenses with a power of about −6.0 D. 34.108 A frog can see an insect clearly at a distance of 10 cm. At that point the effective distance from the lens to the retina is 8 mm. If the insect moves 5 cm farther from the frog, by how much and in which direction does the lens of the frog’s eye have to move to keep the insect in focus? (a) 0.02 cm, toward the retina; (b) 0.02 cm, away from the retina; (c) 0.06 cm, toward the retina; (d) 0.06 cm, away from the retina.
BIO AMPHIBIAN VISION. The eyes of amphibians such as frogs have a much flatter cornea but a more strongly curved (almost spherical) lens than do the eyes of air-dwelling mammals. In mammalian eyes, the shape (and therefore the focal length) of the lens changes to enable the eye to focus at different distances. In amphibian eyes, the shape of the lens doesn’t change. Amphibians focus on objects at different distances by using specialized muscles to move the lens closer to or farther from the retina, like the focusing mechanism of a camera. In air, most frogs are nearsighted; correcting the distance vision of a typical frog in air would require contact lenses with a power of about −6.0 D.
34.108 A frog can see an insect clearly at a distance of 10 cm. At that point the effective distance from the lens to the retina is 8 mm. If the insect moves 5 cm farther from the frog, by how much and in which direction does the lens of the frog’s eye have to move to keep the insect in focus? (a) 0.02 cm, toward the retina; (b) 0.02 cm, away from the retina; (c) 0.06 cm, toward the retina; (d) 0.06 cm, away from the retina.
A ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following.
(a) the time interval during which the ball is in motion
2R
(b) the ball's speed at the peak of its path
v=
Rg 2
√ sin 26, V 3
(c) the initial vertical component of its velocity
Rg
sin ei
sin 20
(d) its initial speed
Rg
√ sin 20
×
(e) the angle 6, expressed in terms of arctan of a fraction.
1
(f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height.
hmax
R2
(g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range.
Xmax
R√3
2
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.