MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 34.2E
The image of a tree just covers the length of a plane mirror 4.00 cm tall when the mirror is held 35.0 cm from the eye. The tree is 28.0 m from the mirror. What is its height?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
.A concave mirror forms an image on a wall 3.00 m in front of the mirror, of a headlamp filament
10 cm in front of the mirror. What is the radius of curvature and the focal length of the mirror?
The focal length of a concave mirror has a magnitude of 20 cm. What is its radius of curvature?
A concave mirror has a focal length of 47 cm. The image formed by this mirror is in front of the mirror and located 103 cm away from it. What is the object distance?
Chapter 34 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 34.1 - If you walk directly toward a plane mirror at a...Ch. 34.2 - A cosmetics mirror is designed so that your...Ch. 34.3 - The water droplets in Fig. 34.23 have radius of...Ch. 34.4 - Prob. 34.4TYUCh. 34.5 - When used with 35-mm film (image area 24 mm 36...Ch. 34.6 - A certain eyeglass lens is thin at its center,...Ch. 34.7 - You are using a magnifier to examine a gem. If you...Ch. 34.8 - Which gives a lateral magnification of greater...Ch. 34 - A spherical mirror is cut in half horizontally....Ch. 34 - For the situation shown in Fig. 34.3, is the image...
Ch. 34 - The laws of optics also apply to electromagnetic...Ch. 34 - Explain why the focal length of a plane mirror is...Ch. 34 - If a spherical mirror is immersed in water, does...Ch. 34 - For what range of object positions does a concave...Ch. 34 - When a room has mirrors on two opposite walls, an...Ch. 34 - For a spherical mirror, if s = f, then s = , and...Ch. 34 - You may have noticed a small convex mirror next to...Ch. 34 - A student claims that she can start a fire on a...Ch. 34 - A person looks at his reflection in the concave...Ch. 34 - In Example 34.4 (Section 34.2), there appears to...Ch. 34 - Prob. 34.13DQCh. 34 - The bottom of the passenger-side mirror on your...Ch. 34 - How could you very quickly make an approximate...Ch. 34 - The focal length of a simple lens depends on the...Ch. 34 - When a converging lens is immersed in water, does...Ch. 34 - A spherical air bubble in water can function as a...Ch. 34 - Can an image formed by one reflecting or...Ch. 34 - If a piece of photographic film is placed at the...Ch. 34 - According to the discussion in Section 34.2, light...Ch. 34 - Youve entered a survival contest that will include...Ch. 34 - BIO You cant see clearly underwater with the naked...Ch. 34 - Prob. 34.24DQCh. 34 - A candle 4.85 cm tall is 39.2 cm to the left of a...Ch. 34 - The image of a tree just covers the length of a...Ch. 34 - A pencil that is 9.0 cm long is held perpendicular...Ch. 34 - A concave mirror has a radius of curvature of 34.0...Ch. 34 - An object 0.600 cm tall is placed 16.5 cm to the...Ch. 34 - An object 0.600 cm tall is placed 16.5 cm to the...Ch. 34 - The diameter of Mars is 6794 km, and its minimum...Ch. 34 - An object is 18.0 cm from the center of a...Ch. 34 - Prob. 34.9ECh. 34 - You hold a spherical salad bowl 60 cm in front of...Ch. 34 - A spherical, concave shaving mirror has a radius...Ch. 34 - For a concave spherical mirror that has focal...Ch. 34 - Dental Mirror. A dentist uses a curved mirror to...Ch. 34 - For a convex spherical mirror that has focal...Ch. 34 - The thin glass shell shown in Fig. E34.15 has a...Ch. 34 - A tank whose bottom is a minor is filled with...Ch. 34 - A speck of dirt is embedded 3.50 cm below the...Ch. 34 - A transparent liquid fills a cylindrical tank to a...Ch. 34 - A person swimming 0.80 m below the surface of the...Ch. 34 - A person is lying on a diving board 3.00 m above...Ch. 34 - A Spherical Fish Bowl. A small tropical fish is at...Ch. 34 - The left end of a long glass rod 6.00 cm in...Ch. 34 - Prob. 34.23ECh. 34 - Prob. 34.24ECh. 34 - Repeat Exercise 34.24 for the case in which the...Ch. 34 - Prob. 34.26ECh. 34 - An insect 3.75 mm tall is placed 22.5 cm to the...Ch. 34 - A lens forms an image of an object. The object is...Ch. 34 - A converging meniscus lens (see Fig. 34.32a) with...Ch. 34 - A converging lens with a focal length of 70.0 cm...Ch. 34 - A converging lens forms an image of an...Ch. 34 - A photographic slide is to the left of a lens. The...Ch. 34 - A double-convex thin lens has surfaces with equal...Ch. 34 - A converging lens with a focal length of 9.00 cm...Ch. 34 - BIO The Cornea As a Simple Lens. The cornea...Ch. 34 - A lensmaker wants to make a magnifying glass from...Ch. 34 - For each thin lens shown in Fig. E34.37, calculate...Ch. 34 - A converging lens with a focal length of 12.0 cm...Ch. 34 - Repeat Exercise 34.38 for the case in which the...Ch. 34 - An object is 16.0 cm to the left of a lens. The...Ch. 34 - Combination of Lenses I. A 1.20-cm-tall object is...Ch. 34 - Combination of Lenses II. Repeat Exercise 34.41...Ch. 34 - Combination of Lenses III. Two thin lenses with a...Ch. 34 - BIO The Lens or the Eye. The crystalline lens of...Ch. 34 - A camera lens has a focal length of 200 mm. How...Ch. 34 - You wish to project the image of a slide on a...Ch. 34 - When a camera is focused, the lens is moved away...Ch. 34 - Zoom Lens. Consider the simple model of the zoom...Ch. 34 - A camera lens has a focal length of 180.0 mm and...Ch. 34 - BIO Curvature of the Cornea. In a simplified model...Ch. 34 - BIO (a) Where is the near point of an eye for...Ch. 34 - BIO Contact Lenses. Contact lenses are placed...Ch. 34 - BIO Ordinary Glasses. Ordinary glasses are worn in...Ch. 34 - BIO A person can see clearly up close but cannot...Ch. 34 - BIO If the person in Exercise 34.54 chooses...Ch. 34 - A thin lens with a focal length of 6.00 cm is used...Ch. 34 - The focal length of a simple magnifier is 8.00 cm....Ch. 34 - You want to view through a magnifier an insect...Ch. 34 - The focal length of the eyepiece of a certain...Ch. 34 - Resolution of a Microscope. The image formed by a...Ch. 34 - A telescope is constructed from two lenses with...Ch. 34 - The eyepiece of a refracting telescope (see Fig....Ch. 34 - A reflecting telescope (Fig. E34.63) is to be made...Ch. 34 - What is the size of the smallest vertical plane...Ch. 34 - If you run away from a plane mirror at 3.60 m/s,...Ch. 34 - Where must you place an object in front of a...Ch. 34 - Prob. 34.67PCh. 34 - A light bulb is 3.00 m from a wall. You are to use...Ch. 34 - CP CALC You are in your car driving on a highway...Ch. 34 - A layer of benzene (n = 1.50) that is 4.20 cm deep...Ch. 34 - Rear-View Mirror. A mirror on the passenger side...Ch. 34 - Figure P34.72 shows a small plant near a thin...Ch. 34 - Pinhole Camera. A pinhole camera is just a...Ch. 34 - Prob. 34.74PCh. 34 - Prob. 34.75PCh. 34 - A Glass Rod. Both ends of a glass rod with index...Ch. 34 - (a) You want to use a lens with a focal length of...Ch. 34 - Autocollimation. You place an object alongside a...Ch. 34 - A lens forms a real image that is 214 cm away from...Ch. 34 - Figure P34.80 shows an object and its image formed...Ch. 34 - Figure P34.81 shows an object and its image formed...Ch. 34 - A transparent rod 30.0 cm long is cut flat at one...Ch. 34 - BIO Focus of the Eye. The cornea of the eye has a...Ch. 34 - The radii of curvature of the surfaces of a thin...Ch. 34 - An object to the left of a lens is imaged by the...Ch. 34 - An object is placed 22.0 cm from a screen. (a) At...Ch. 34 - A convex mirror and a concave mirror are placed on...Ch. 34 - A screen is placed a distance d to the right of an...Ch. 34 - As shown in Fig. P34.89, the candle is at the...Ch. 34 - Two Lenses in Contact. (a) Prove that when two...Ch. 34 - When an object is placed at the proper distance to...Ch. 34 - (a) Repeat the derivation of Eq. (34.19) for the...Ch. 34 - A convex spherical mirror with a focal length of...Ch. 34 - BIO What Is the Smallest Thing We Can See? The...Ch. 34 - Three thin lenses, each with a focal length of...Ch. 34 - A camera with a 90-mm-focal-length lens is focused...Ch. 34 - BIO In one form of cataract surgery the persons...Ch. 34 - BIO A Nearsighted Eye. A certain very nearsighted...Ch. 34 - BIO A person with a near point of 85 cm, but...Ch. 34 - The Galilean Telescope. Figure P34.100 is a...Ch. 34 - Focal Length of a Zoom Lens. Figure P34.101 shows...Ch. 34 - DATA In setting up an experiment for a high school...Ch. 34 - DATA It is your first day at work as a summer...Ch. 34 - Prob. 34.104PCh. 34 - CALC (a) For a lens with focal length f, find the...Ch. 34 - An Object at an Angle. A 16.0-cm-long pencil is...Ch. 34 - BIO People with normal vision cannot focus their...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...Ch. 34 - Given that frogs are nearsighted in air, which...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Find the electric field of a large conducting plate containing a net charge q. Let A be area of one side of the...
University Physics Volume 2
Choose the best answer to each of the following. Explain your reasoning. A pulsar is (a) an unstable high-mass ...
Cosmic Perspective Fundamentals
65. The ropes in Figure P7.65 are each wrapped around a cylinder, and the two cylinders are fastened together. ...
College Physics: A Strategic Approach (4th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
Why are scientists interested in the possibility of life beyond Earth?
Life in the Universe (4th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
The Cosmic Perspective Fundamentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The disk of the Sun subtends an angle of 0.533 at the Earth. What are (a) the position and (b) the diameter of the solar image formed by a concave spherical mirror with a radius of curvature of magnitude 3.00 m?arrow_forwardA convex mirror with a radius of curvature of 25.0 cm is used to form an image of an arrow that is 10.0 cm away from the mirror. If the arrow is 2.00 cm tall and inverted (pointing below the optical axis), what is the height of the arrows image?arrow_forwardWhat is the magnification of a magnifying lens with a focal length of 10 cm if it is held 3.0 cm from the eye and the object is 12 cm from the eye?arrow_forward
- If Joshs face is 30.0 cm in front of a concave shaving mirror creating an upright image 1.50 times as large as the object, what is the mirrors focal length? (a) 12.0 cm (b) 20.0 cm (c) 70.0 cm (d) 90.0 cm (e) none of those answersarrow_forwardA lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forwardAn object of height 3 cm is placed at 25 cm in front of a converging lens of focal length 20 cm. Behind the lens there is a concave mirror of focal length 20 cm. The distance between the lens and the mirror is 5 cm. Find the location, orientation and size of the final image.arrow_forward
- An object of height 2 cm is placed at 50 cm in front of a diverging lens of focal length 40 cm. Behind the lens, there is a convex mirror of focal length 15 cm placed 30 cm from the converging lens. Find the location, orientation, and size of the final image.arrow_forwardUnder what circumstances will an image be located at the focal point of a spherical lens or mirror?arrow_forwardThe radius of curvature of the left-hand face of a flint glass biconvex lens (n = 1.60) has a magnitude of 8.00 cm, and the radius of curvature of the right-hand face has a magnitude of 11.0 cm. The incident surface of a biconvex lens is convex regardless of which side is the incident side. What is the focal length of the lens if light is incident on the lens from the left?arrow_forward
- An object of height 3 cm is placed at a distance of 25 cm in front of a converging lens of focal length 20 cm, to be referred to as the first lens. Behind the lens there is another converging lens of focal length 20 cm placed 10 cm from the first lens. There is a concave mirror of focal length 15 cm placed 50 cm from the second lens. Find the location, orientation, and size of the final image.arrow_forwardA light bulb is placed 10 cm from a plane mirror, which faces a convex mirror of radius of curvature 8 cm. The plane mirror is located at a distance of 30 cm from the vertex of the convex mirror. Find the location of two images in the convex mirror. Are there other images? If so, where are they located?arrow_forwardA 1.80-m-tall person stands 9.00 m in front of a large, concave spherical mirror having a radius of curvature of 3.00 m. Determine (a) the mirrors focal length, (b) the image distance, and (c) the magnification. (d) Is the image real or virtual? (e) Is the image upright or inverted?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
AP Physics 2 - Geometric Optics: Mirrors and Lenses - Intro Lesson; Author: N. German;https://www.youtube.com/watch?v=unT297HdZC0;License: Standard YouTube License, CC-BY