MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 34.4, Problem 34.4TYU
To determine
The rays among A, B, C and D which will emanate from point Q at the top of the object
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An object of height 2.9 cm is placed at 26 cm in front of a diverging lens of focal length, f = –17 cm. Behind the diverging lens, there is a converging lens of
focal length, f = 17 cm. The distance between the lenses is 5 cm. In the next few steps, you will find the location and size of the final image.
Where is the intermediate image formed by the first diverging lens? Image distance from first lens is d(i1) =
. (Use the sign to
indicate which side the image is on; positive sign means image is on the side of outgoing rays, and negative sign means image is on the side opposite to the
outgoing rays.)
Where is the final image formed by the second converging lens? Image distance from second lens is d(i2) =
(Use the sign to
indicate which side the image is on.)
How large is the intermediate image formed by the first diverging lens? Intermediate image height is h(i1) =
(Use the sign to
indicate whether the image is upright (positive) or inverted (negative).)
How large is the final image…
A 3.0 cm tall object is positioned 15.5 cm from a converging lens. The focal length of the lens is 10.5 cm. What is the distance to the image? What is the magnification of the image? What is the height of the image? Is the image real or virtual? Is the image inverted or upright?
A light ray is incident on an equiliateral prism at an angle 6, with the normal. It strikes the second
surface at the critical angle of 44.5°, as shown in the figure below. The angle of incidence e, at the
first surface is,
60°
44.5
O 45.2"
35.9°
O 22.4
O 10.5°
Chapter 34 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 34.1 - If you walk directly toward a plane mirror at a...Ch. 34.2 - A cosmetics mirror is designed so that your...Ch. 34.3 - The water droplets in Fig. 34.23 have radius of...Ch. 34.4 - Prob. 34.4TYUCh. 34.5 - When used with 35-mm film (image area 24 mm 36...Ch. 34.6 - A certain eyeglass lens is thin at its center,...Ch. 34.7 - You are using a magnifier to examine a gem. If you...Ch. 34.8 - Which gives a lateral magnification of greater...Ch. 34 - A spherical mirror is cut in half horizontally....Ch. 34 - For the situation shown in Fig. 34.3, is the image...
Ch. 34 - The laws of optics also apply to electromagnetic...Ch. 34 - Explain why the focal length of a plane mirror is...Ch. 34 - If a spherical mirror is immersed in water, does...Ch. 34 - For what range of object positions does a concave...Ch. 34 - When a room has mirrors on two opposite walls, an...Ch. 34 - For a spherical mirror, if s = f, then s = , and...Ch. 34 - You may have noticed a small convex mirror next to...Ch. 34 - A student claims that she can start a fire on a...Ch. 34 - A person looks at his reflection in the concave...Ch. 34 - In Example 34.4 (Section 34.2), there appears to...Ch. 34 - Prob. 34.13DQCh. 34 - The bottom of the passenger-side mirror on your...Ch. 34 - How could you very quickly make an approximate...Ch. 34 - The focal length of a simple lens depends on the...Ch. 34 - When a converging lens is immersed in water, does...Ch. 34 - A spherical air bubble in water can function as a...Ch. 34 - Can an image formed by one reflecting or...Ch. 34 - If a piece of photographic film is placed at the...Ch. 34 - According to the discussion in Section 34.2, light...Ch. 34 - Youve entered a survival contest that will include...Ch. 34 - BIO You cant see clearly underwater with the naked...Ch. 34 - Prob. 34.24DQCh. 34 - A candle 4.85 cm tall is 39.2 cm to the left of a...Ch. 34 - The image of a tree just covers the length of a...Ch. 34 - A pencil that is 9.0 cm long is held perpendicular...Ch. 34 - A concave mirror has a radius of curvature of 34.0...Ch. 34 - An object 0.600 cm tall is placed 16.5 cm to the...Ch. 34 - An object 0.600 cm tall is placed 16.5 cm to the...Ch. 34 - The diameter of Mars is 6794 km, and its minimum...Ch. 34 - An object is 18.0 cm from the center of a...Ch. 34 - Prob. 34.9ECh. 34 - You hold a spherical salad bowl 60 cm in front of...Ch. 34 - A spherical, concave shaving mirror has a radius...Ch. 34 - For a concave spherical mirror that has focal...Ch. 34 - Dental Mirror. A dentist uses a curved mirror to...Ch. 34 - For a convex spherical mirror that has focal...Ch. 34 - The thin glass shell shown in Fig. E34.15 has a...Ch. 34 - A tank whose bottom is a minor is filled with...Ch. 34 - A speck of dirt is embedded 3.50 cm below the...Ch. 34 - A transparent liquid fills a cylindrical tank to a...Ch. 34 - A person swimming 0.80 m below the surface of the...Ch. 34 - A person is lying on a diving board 3.00 m above...Ch. 34 - A Spherical Fish Bowl. A small tropical fish is at...Ch. 34 - The left end of a long glass rod 6.00 cm in...Ch. 34 - Prob. 34.23ECh. 34 - Prob. 34.24ECh. 34 - Repeat Exercise 34.24 for the case in which the...Ch. 34 - Prob. 34.26ECh. 34 - An insect 3.75 mm tall is placed 22.5 cm to the...Ch. 34 - A lens forms an image of an object. The object is...Ch. 34 - A converging meniscus lens (see Fig. 34.32a) with...Ch. 34 - A converging lens with a focal length of 70.0 cm...Ch. 34 - A converging lens forms an image of an...Ch. 34 - A photographic slide is to the left of a lens. The...Ch. 34 - A double-convex thin lens has surfaces with equal...Ch. 34 - A converging lens with a focal length of 9.00 cm...Ch. 34 - BIO The Cornea As a Simple Lens. The cornea...Ch. 34 - A lensmaker wants to make a magnifying glass from...Ch. 34 - For each thin lens shown in Fig. E34.37, calculate...Ch. 34 - A converging lens with a focal length of 12.0 cm...Ch. 34 - Repeat Exercise 34.38 for the case in which the...Ch. 34 - An object is 16.0 cm to the left of a lens. The...Ch. 34 - Combination of Lenses I. A 1.20-cm-tall object is...Ch. 34 - Combination of Lenses II. Repeat Exercise 34.41...Ch. 34 - Combination of Lenses III. Two thin lenses with a...Ch. 34 - BIO The Lens or the Eye. The crystalline lens of...Ch. 34 - A camera lens has a focal length of 200 mm. How...Ch. 34 - You wish to project the image of a slide on a...Ch. 34 - When a camera is focused, the lens is moved away...Ch. 34 - Zoom Lens. Consider the simple model of the zoom...Ch. 34 - A camera lens has a focal length of 180.0 mm and...Ch. 34 - BIO Curvature of the Cornea. In a simplified model...Ch. 34 - BIO (a) Where is the near point of an eye for...Ch. 34 - BIO Contact Lenses. Contact lenses are placed...Ch. 34 - BIO Ordinary Glasses. Ordinary glasses are worn in...Ch. 34 - BIO A person can see clearly up close but cannot...Ch. 34 - BIO If the person in Exercise 34.54 chooses...Ch. 34 - A thin lens with a focal length of 6.00 cm is used...Ch. 34 - The focal length of a simple magnifier is 8.00 cm....Ch. 34 - You want to view through a magnifier an insect...Ch. 34 - The focal length of the eyepiece of a certain...Ch. 34 - Resolution of a Microscope. The image formed by a...Ch. 34 - A telescope is constructed from two lenses with...Ch. 34 - The eyepiece of a refracting telescope (see Fig....Ch. 34 - A reflecting telescope (Fig. E34.63) is to be made...Ch. 34 - What is the size of the smallest vertical plane...Ch. 34 - If you run away from a plane mirror at 3.60 m/s,...Ch. 34 - Where must you place an object in front of a...Ch. 34 - Prob. 34.67PCh. 34 - A light bulb is 3.00 m from a wall. You are to use...Ch. 34 - CP CALC You are in your car driving on a highway...Ch. 34 - A layer of benzene (n = 1.50) that is 4.20 cm deep...Ch. 34 - Rear-View Mirror. A mirror on the passenger side...Ch. 34 - Figure P34.72 shows a small plant near a thin...Ch. 34 - Pinhole Camera. A pinhole camera is just a...Ch. 34 - Prob. 34.74PCh. 34 - Prob. 34.75PCh. 34 - A Glass Rod. Both ends of a glass rod with index...Ch. 34 - (a) You want to use a lens with a focal length of...Ch. 34 - Autocollimation. You place an object alongside a...Ch. 34 - A lens forms a real image that is 214 cm away from...Ch. 34 - Figure P34.80 shows an object and its image formed...Ch. 34 - Figure P34.81 shows an object and its image formed...Ch. 34 - A transparent rod 30.0 cm long is cut flat at one...Ch. 34 - BIO Focus of the Eye. The cornea of the eye has a...Ch. 34 - The radii of curvature of the surfaces of a thin...Ch. 34 - An object to the left of a lens is imaged by the...Ch. 34 - An object is placed 22.0 cm from a screen. (a) At...Ch. 34 - A convex mirror and a concave mirror are placed on...Ch. 34 - A screen is placed a distance d to the right of an...Ch. 34 - As shown in Fig. P34.89, the candle is at the...Ch. 34 - Two Lenses in Contact. (a) Prove that when two...Ch. 34 - When an object is placed at the proper distance to...Ch. 34 - (a) Repeat the derivation of Eq. (34.19) for the...Ch. 34 - A convex spherical mirror with a focal length of...Ch. 34 - BIO What Is the Smallest Thing We Can See? The...Ch. 34 - Three thin lenses, each with a focal length of...Ch. 34 - A camera with a 90-mm-focal-length lens is focused...Ch. 34 - BIO In one form of cataract surgery the persons...Ch. 34 - BIO A Nearsighted Eye. A certain very nearsighted...Ch. 34 - BIO A person with a near point of 85 cm, but...Ch. 34 - The Galilean Telescope. Figure P34.100 is a...Ch. 34 - Focal Length of a Zoom Lens. Figure P34.101 shows...Ch. 34 - DATA In setting up an experiment for a high school...Ch. 34 - DATA It is your first day at work as a summer...Ch. 34 - Prob. 34.104PCh. 34 - CALC (a) For a lens with focal length f, find the...Ch. 34 - An Object at an Angle. A 16.0-cm-long pencil is...Ch. 34 - BIO People with normal vision cannot focus their...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...Ch. 34 - Given that frogs are nearsighted in air, which...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a beam of light from the left entering a prism of apex angle as shown in Figure P34.34. Two angles of incidence, 1, and 3, are shown as Hell as two angles of refraction, 2 and 4. Show that = 1 + 3. Figure P34.34arrow_forwardThe end of a solid glass rod of refractive index 1.50 is polished to have the shape of a hemispherical surface of radius 1.0 cm. A small object is placed in air (refractive index 1.00) on the axis 5.0 cm to the left of the vertex. Determine the position of the image.arrow_forwardUse a ruler and a protractor to find the image by refraction in the following cases. Assume an air-glass interface. Use a refractive index of 1 for air and of 1.5 for glass. (Hint: Use Snell’s law at the interface.) (a) A point object located on the axis of a concave interface located at a point within the focal length from the vertex. (b) A point object located on the axis of a concave interface located at a point farther than the focal length from the vertex. (c) A point object located on the axis of a convex interface located at a point within the focal length from the vertex. (d) A point object located on the axis of a convex interface located at a point farther than the focal length from the vertex. (e) Repeat (a)—(d) for a point object off the axis.arrow_forward
- Two convex lenses of focal lengths 20 cm and 10 cm are placed 30 cm apart, with the lens with the longer focal length on the right. An object of height 2.0 cm is placed midway between them and observed through each lens from the left and from the right. Describe what you will see, such as where the image(s) will appear, whether they will be upright or inverted and their magnifications.arrow_forwardA thin lens has two focal points, one on either side of the lens at equal distances from its center, and should behave the same for light entering from either side. Look backward and forward through a pair of eyeglasses and comment on whether they are thin lenses.arrow_forwardA small coin is resting at the bottom of a swimming pool. Draw a ray diagram of the situation, showing at least two incident rays (one on each side of the normal) and their refracted rays at the water-air interface. Trace the refracted rays back into the water until they converge. Now you can identify some right triangles that will allow you to deduce the apparent distance below the water of the coin in terms of its actual distance and the index of refraction. Derive from this the formula for the apparent distance.arrow_forward
- A 1.5 cmcm high object is located 30 cmcm from a diverging lens, whose focal length is 11 cmcm . What is the height of the image produced by the lens? You have determined the height of the image using numerical methods and, in so doing, have also determined its position, s′s′s'. Now, use graphical methods to evaluate your results.The diagram below shows the object, a ray (ray 1) parallel to the optic axis of the lens, and a ray (ray 2) proceeding toward the first focal point of the lens. Draw the refracted rays and the image produced by the lens. Make sure you extend the refracted rays sufficiently backward in order to find the image. Keep in mind that principal-ray diagrams must be drawn accurately to give good results!arrow_forwardA ray of red light in air (=650 nm) is incident on a semicircular block of clear plastic (n = 1.51 for this light), as shown above. The ray strikes the block at its center of curvature at an angle of incidence of 27°. Part of the incident ray is reflected and part is refracted at the first interface. On paper, print or redraw the figure seen. A. Determine the angle of reflection at the first interface. Draw and clearly label the reflected ray on the diagram. B. Determine the angle of refraction at the first interface. Draw and clearly label the refracted ray on the diagram. C. Determine the speed of the light in the plastic block. D. Determine the wavelength of the light in the plastic block. E. The light exits the plastic through the semicircular side. Draw in the ray showing the light exiting back into the air. If any, what will the angle change be as it enters the air? Justify.arrow_forwardA 6.97 mm high firefly sits on the axis of, and 10.3 cm in front of, the thin lens A, whose focal length is 5.61 cm. Behind lens A there is another thin lens, lens B, with a focal length of 22.5 cm. The two lenses share a common axis and are 55.3 cm apart. Is the image of the firefly that lens B forms real or virtual? virtual real How far from lens B is this image located? Express the answer as a positive number. image distance from lens B: 42.98 cm image distance from lens B: 42.98 cm What is the height of this image? Express the answer as a positive number. image height: 1.94 mm Is this image upright or inverted with respect to the firefly? upright invertedarrow_forward
- An object of height 2.9 cm is placed at 22 cm in front of a diverging lens of focal length, f = -17 cm. Behind the diverging lens, there is a converging lens of focal length, f = 17 cm. The distance between the lenses is 3 cm. In the next few steps, you will find the location and size of the final image. Hint a. Where is the intermediate image formed by the first diverging lens? Image distance from first lens is di= cm. (Use the sign to indicate which side the image is on; positive sign means image is on the side of outgoing rays, and negative sign means image is on the side opposite to the outgoing rays.) b. Where is the final image formed by the second converging lens? Image distance from second lens is di₂ = cm. (Use the sign to indicate which side the image is on.) c. How large is the intermediate image formed by the first diverging lens? Intermediate image height is h₂ = cm. (Use the sign to indicate whether the image is upright (positive) or inverted (negative).) d. How large is…arrow_forwardA man inside a spherical diving bell watches a fish through a window in the bell, as in the figure below. If the diving bell has radius R = 1.88 m and the fish is a distance p = 1.32 m from the window, calculate the image distance and the magnification. Neglect the thickness of the window. (Use 1.333 and 1.000 for the indices of refraction of water and air, respectively.) An illustration shows a person inside a submerged spherical diving bell of radius R. The person observes a fish shown to be a distance p beyond the diving bell's viewing window. (a) the image distance (in m) answer in m (b) the magnificationarrow_forwardA 6.51 mm high firefly sits on the axis of, and 12.3 cm in front of, the thin lens A, whose focal length is 5.51 cm. Behind lens A there is another thin lens, lens B, with a focal length of 20.3 cm. The two lenses share a common axis and are 59.7 cm apart. Is the image of the firefly that lens B forms real or virtual? virtual real How far from lens B is this image located? Express the answer as a positive number. 9.98 image distance from lens B: cm Incorrect What is the height of this image? Express the answer as a positive number. 34.29 image height: mm Incorrect Is this image upright or inverted with respect to the firefly? O upright invertedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY