Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 34, Problem 25P
To determine

The angular spread of visible light passing through a prism.

Expert Solution & Answer
Check Mark

Answer to Problem 25P

The angular spread of visible light passing through a prism is sin1[nVsin(ϕsin1(sinθnV))]sin1[nRsin(ϕsin1(sinθnR))] .

Explanation of Solution

Given Info:

Write the expression for snell’s law for prism to calculate angle of refraction for red light.

n1sinθ1=n2sin(ϕθ2)sin(ϕθ2)=(n1sinθ1n2)θ2=ϕsin1(n1sinθ1n2) (1)

Here,

n1 is refractive index for air.

θ1 is angle of incidence for red light.

n2 is refractive index for red light.

θ2 is the angle of refraction for red light.

ϕ is the apex angle.

Substitute 1 for n1 , θ for θ1 and nR for n2 in above equation

θ2=ϕsin1(1sinθnR)=ϕsin1(sinθnR)

Write the expression for snell’s law,

n1sinθ1=n2sin(θ2)sin(θ1)=(n2sinθ2n1)θ1=sin1(n2sinθ2n1)

Here,

θ1 is deviation of red light from incidence light.

θ2 is angle of refraction for red light

n1 is the refractive index for air.

n2 is refractive index for red light

Substitute θ2=ϕsin1(sinθnR) for θ2 , 1 for n1 , θR for θ1 and for nR for n2 in above equation.

θR=sin1(nRsin(ϕsin1(sinθnR))1)=sin1(nRsin(ϕsin1(sinθnR)))

Write the expression for snell’s law for prism to calculate angle of refraction for violet light.

n1sinθ1=n2sin(ϕθ2)sin(ϕθ2)=(n1sinθ1n2)θ2=ϕsin1(n1sinθ1n2) (2)

Here,

n1 is refractive index for air.

θ1 is angle of incidence for violet light.

n2 is refractive index for violet light.

θ2 is the angle of refraction for violet light.

ϕ is the apex angle.

Substitute 1 for n1 , θ for θ1 and nV for n2 in equation (2).

θ2=ϕsin1(1sinθnV)=ϕsin1(sinθnV)

Write the expression for Snell's law.

n1sinθ1=n2sin(θ2)sin(θ1)=(n2sinθ2n1)θ1=sin1(n2sinθ2n1)

Here,

θ1 is deviation of violet light from incidence light.

θ2 is angle of refraction for violet light

n1 is the refractive index for air.

n2 is refractive index for violet light.

Substitute θ2=ϕsin1(sinθnV) for θ2 , 1 for n1 , θV for θ1 and for nV for n2 in above equation.

θV=sin1(nVsin(ϕsin1(sinθnV))1)=sin1(nVsin(ϕsin1(sinθnV)))

Write the expression for angular spread of visible light,

ω=θVθR

Here,

θV is deviation of violet light from visible light.

θR is the deviation of red light from visible light.

Substitute sin1(nVsin(ϕsin1(sinθnV))) for θV and sin1(nRsin(ϕsin1(sinθnR))) for θR in above equation.

ω=sin1(nVsin(ϕsin1(sinθnV)))sin1(nRsin(ϕsin1(sinθnR)))

Conclusion:

Therefore, the angular spread of visible light passing through a prism is sin1[nVsin(ϕsin1(sinθnV))]sin1[nRsin(ϕsin1(sinθnR))] .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Concept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.
A bat is flying toward a cave wall at 27.0 m/s. What is the frequency of the reflected sound that it hears, assuming it emits sound at 52.0 kHz? The speed of sound is 341.5 m/s. Multiple Choice о 60.9 kHz О 56.5 kHz о 61.3 kHz О 56.1 kHz
Compare the slope of your Data Table 2 graph to the average wavelength (Ave, l) from Data Table 2 by calculating the % Difference. Is the % Difference calculated for the wavelength in Data Table 2 within an acceptable % error? Explain why or why not?

Chapter 34 Solutions

Physics for Scientists and Engineers with Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning