Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 34, Problem 16P
(a)
To determine
Whether it is possible for the component of its velocity perpendicular to the interface to remain constant.
(b)
To determine
Whether the component of velocity parallel to the interface remain constant during refraction or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Light passes from air into flint glass at a nonzero angle of incidence. (a) Is it possible for the component of its velocity perpendicular to the interface to remain constant? Explain your answer. (b) What If? Can the component of velocity parallel to the interface remain constant during refraction? Explain your answer.
A ray of light in glass strikes a water-glass interface at an angle of incidence equal to one-third the
critical angle for that interface. The index of refraction for water is 1.33, and for the glass it is 1.43.
What angle does the refracted ray in the water make with the normal?
O 37.0°
O 57.5°
O 24.6°
O 42.3°
32.2⁰
The figure below shows the path of a beam of light through several layers with different indices of refraction. (Assume n
1.08.)
n = 1,60
n = 1.40
n = 1.20
(a) If 0, = 20.0°, what is the angle 0, of the emerging beam?
(b) What is the smallest incident angle 0, to have total internal reflection at the surface between the medium with n = 1.20 and the medium with n. = 1.08?
Chapter 34 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 34.3 - Prob. 34.1QQCh. 34.4 - If beam is the incoming beam in Figure 34.10b,...Ch. 34.4 - Light passes from a material with index of...Ch. 34.6 - Prob. 34.4QQCh. 34.7 - Prob. 34.5QQCh. 34 - In an experiment to measure the speed of light...Ch. 34 - Prob. 2PCh. 34 - As a result of his observations, Ole Roemer...Ch. 34 - Prob. 4PCh. 34 - You are working for an optical research company...
Ch. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - Prob. 9PCh. 34 - A ray of light strikes a flat block of glass (n =...Ch. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - When you look through a window, by what time...Ch. 34 - Prob. 16PCh. 34 - You have just installed a new bathroom in your...Ch. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - Prob. 21PCh. 34 - A submarine is 300 m horizontally from the shore...Ch. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Prob. 26PCh. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - An optical fiber has an index of refraction n and...Ch. 34 - Prob. 32APCh. 34 - How many times will the incident beam in Figure...Ch. 34 - Prob. 34APCh. 34 - Prob. 35APCh. 34 - Prob. 36APCh. 34 - Prob. 37APCh. 34 - Prob. 38APCh. 34 - Prob. 39APCh. 34 - A light ray enters the atmosphere of a planet and...Ch. 34 - Prob. 41APCh. 34 - Prob. 42APCh. 34 - Prob. 43APCh. 34 - Prob. 44APCh. 34 - Prob. 45APCh. 34 - Prob. 46APCh. 34 - Prob. 47APCh. 34 - Prob. 48APCh. 34 - Prob. 49APCh. 34 - Figure P34.50 shows a top view of a square...Ch. 34 - Prob. 51APCh. 34 - Prob. 52CPCh. 34 - Prob. 53CPCh. 34 - Pierre de Fermat (16011665) showed that whenever...Ch. 34 - Prob. 55CPCh. 34 - Prob. 56CPCh. 34 - Prob. 57CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardThe index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forwardA light ray is incident on an interface between water (n = 1.333) and air (n = 1.0002926) from within the air. If the angle of incidence in the air is 30.0, what is the angle of the refracted ray in the water?arrow_forward
- Unpolarized light in vacuum is incident onto a sheet of glass with index of refraction n. The reflected and refracted rays are perpendicular to each other. Find the angle of incidence. This angle is called Brewsters angle or the polarizing angle. In this situation, the reflected light is linearly polarized, with its electric field restricted to be perpendicular to the plane containing the rays and the normal.arrow_forwardA beam of light is incident from the air on a transparent substance at an angle of 56 with respect to the normal, part of the beam is reflected and the other is refracted. It is observed that the reflected and refracted beams are mutually perpendicular. What is the refractive incidence of the transparent substance? What can you say about the reflected beam? Since you know both indices of refraction, suppose a light beam is incident from the medium with the higher index of refraction to the medium with the lower index of refraction. What is the critical angle to achieve total internal reflection?arrow_forwardA beam of light in air enters a glass slab with an index of refraction of 1.40 at an angle of incidence of 30.0°. What is the angle of refraction? O 47.5° O 30.0° O 14.9° O 20.9° O 51.8°arrow_forward
- In the figure, light from ray A refracts from material 1 (n1 = 1.60) into a thin layer of material 2 (n2 = 1.80), crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3 (n3 = 1.3). (a) What is the value of incident angle θA? (b) If θA is decreased, does part of the light refract into material 3? Light from ray B refracts from material 1 into the thin layer, crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3. (c) What is the value of incident angle θB? (d) If θB is decreased, does part of the light refract into material 3?arrow_forwardConsider a layer of Oil, Glass, and Air where the oil/glass boundary is parallel to the glass/air boundary. Let the index of refraction for the glass be 1.55 and the index of refraction for the oil to be 1.31. At what angle relative to the normal should a ray of light be directed upon the oil/glass interface such that it strikes the glass/air interface at the critical angle?arrow_forwardThe critical angle for total internal reflection at a turpentine-air interface is 42.8°. A ray traveling in the liquid has an angle of incidence of 32.0° at the interface. What angle does the refracted ray in air make with the normal? O51.3° O 14.7° O 53.0° O 23.8° here to search Larrow_forward
- A ray of light strikes a flat block of glass at an incidence angle of ?1 = 38.6°. The glass is 2.00 cm thick and has an index of refraction that equals ng = 1.52. a.) The distance d separates the twice-bent ray from the path it would have taken without the glass in the way. What is this distance (in cm)? b.) At what speed (in m/s) does the light travel within the glass? c.) How many nanoseconds does the light take to pass through the glass along the angled path shown here?arrow_forwardIn Figure (a), a beam of light in material 1 is incident on a boundary at an angle of 28°. The extent to which the light is bent due to refraction depends, in part, on the index of refraction n2 of material 2. Figure (b) gives the angle of refraction 02 versus n2 for a range of possible n2 values, from na = 1.40 to np = 1.97. What is the speed of light in material 1? 38 28 28° 18° (a) (b) Number Units the tolerance is +/-5%arrow_forwardA scientist is carrying out an experiment to determine the index of refraction for a partially reflective material. To do this, he aims a narrow beam of light at a sample of this material, which has a smooth surface. He then varies the angle of incidence. (The incident beam is traveling through air.) The light that gets reflected by the sample is completely polarized when the angle of incidence is 56.0°. (a) What index of refraction describes the material? n = (b) If some of the incident light (at ?i = 56.0°) enters the material and travels below the surface, what is the angle of refraction (in degrees)? in degrees °arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY