College Physics
1st Edition
ISBN: 9781938168048
Author: Paul Peter Urone, OpenStax, Roger Hinrichs
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 33, Problem 9PE
The 3.20−km−long SLAC produces a beam of 50.0−GeV electrons. If there are 15,000 accelerating tubes, what average un?age must be across the gaps between them to achieve this energy?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 3.20-km-long SLAC produces a beam of 50.0-GeV electrons. If there are 15,000 accelerating tubes, what average voltage must be across the gaps between them to achieve this energy?
3. What is the kinetic energy in MeV of a of a π-meson that lives 1.40 × 10−16 s as measured in the laboratory, and 0.840 × 10−16 s when at rest relative to an observer, given that its rest energy is 135 MeV?
Please put the solution and indicate what is the answer.
Topic: realistic energy and momentum
What is the total energy of a proton whose kinetic energy
is 25 GeV? What is its wavelength?
Chapter 33 Solutions
College Physics
Ch. 33 - The total energy in the beam of an accelerator is...Ch. 33 - Synchrotron radiation takes energy from an...Ch. 33 - What two major limitations prevent us from...Ch. 33 - What are the advantages of collidingbeam...Ch. 33 - Large quanti?es of antimatter isolated from normal...Ch. 33 - Massless particles are not only neutral, they are...Ch. 33 - Massless particles must travel at the speed of...Ch. 33 - When a stat erupts in a supernova explosion, huge...Ch. 33 - Theorists have had spectacular success in...Ch. 33 - What lifetime do you expect for an antineutron...
Ch. 33 - Why does the meson have such a short lifetime...Ch. 33 - (a) Is a hadron always a baryon? (b) Is a baryon...Ch. 33 - Explain how conservation of baryon number is...Ch. 33 - The quark ?avor change it takes place in decay....Ch. 33 - Explain how the weak force can change strangeness...Ch. 33 - Beta decay is caused by the weak force, as are all...Ch. 33 - Why is it easier to see the properties of the c,...Ch. 33 - How can quarks, which are fermions, combine to...Ch. 33 - What evidence is cited is support the contention...Ch. 33 - Discuss how we know that (mesons are not...Ch. 33 - An antibaryon has three antiquarks with colors...Ch. 33 - Suppose leptons are created in a reaction. Does...Ch. 33 - How can the lifetime of a particle indicate that...Ch. 33 - (a) Do all particles having strangeness also have...Ch. 33 - The sigmazero particle decays mostly via the...Ch. 33 - What do the quark compositions and other quantum...Ch. 33 - Discuss the similarities and differences between...Ch. 33 - Identity evidence for electroweak unification.Ch. 33 - The quarks in a particle are con?ned, meaning...Ch. 33 - If a GUT is proven, and the four forces are...Ch. 33 - If the Higgs boson is discovered and found to have...Ch. 33 - Gluons and the photon are massless. Does this...Ch. 33 - A virtual particle having an approximate mass of...Ch. 33 - Calculate the mass in of a virtual carrier...Ch. 33 - Another component of the strong nuclear force is...Ch. 33 - (a) Find the ratio of the strengths the weak and...Ch. 33 - We ratio of the strong to the weak force and the...Ch. 33 - At full energy, protons in the 2.00kmdiameter...Ch. 33 - Suppose a W created in a bubble chamber lives for...Ch. 33 - What length track does a (+ traveling at 0.100 c...Ch. 33 - The 3.20kmlong SLAC produces a beam of 50.0GeV...Ch. 33 - Because of energy loss due to synchrotron...Ch. 33 - A proton and an antiproton collide headon, with...Ch. 33 - When an electron and positron collide at the SLAC...Ch. 33 - The is its own antiparticle and decays in the...Ch. 33 - The primary decay mode for the negative pion is...Ch. 33 - The mass of a theoretical particle that may be...Ch. 33 - The decay mode of the negative muon is (a) Find...Ch. 33 - The decay mode of the positive tau is (a) What...Ch. 33 - The principal decay mode at the sigma zero is (a)...Ch. 33 - (a) What is the uncertainty in the energy released...Ch. 33 - (a) What is the uncertainty in the energy released...Ch. 33 - (a) Verify from its quark composition that the...Ch. 33 - Accelerators such as the Triangle Universities...Ch. 33 - The reaction (described in the preceding problem)...Ch. 33 - One of the decay modes of the omega minus is (a)...Ch. 33 - Repeat the previous problem for the decay modeCh. 33 - One decay mode for the etazero meson is (a) Find...Ch. 33 - One decay mode for the etazero meson is (a) Write...Ch. 33 - Is the decay possible considering the appropriate...Ch. 33 - Is the decay possible considering the appropriate...Ch. 33 - (a) Is the decay possible considering the...Ch. 33 - (a) Is the decay possible considering the...Ch. 33 - The only combination of quark colors that produces...Ch. 33 - (a) Three quarks form a baryon. How many...Ch. 33 - (a) Show that the conjectured decay of the proton,...Ch. 33 - Verify the quantum numbers given for the + in...Ch. 33 - Verify the quantum numbers given for the proton...Ch. 33 - (a) How much energy would be released if the...Ch. 33 - (a) Find the charge, baryon number, strangeness,...Ch. 33 - There are particles called Dmesons. One of them is...Ch. 33 - There are particles called bottom mesons or...Ch. 33 - (a) What particle has the quark composition u-u-d?...Ch. 33 - (a) Show than all combinations of three quarks...Ch. 33 - Integrated Concepts The intensity of cosmic ray...Ch. 33 - Integrated Concepts Assuming conservation of...Ch. 33 - Integrated Concepts What is the wavelength of a...Ch. 33 - Integrated Concepts Calculate the relativistic...Ch. 33 - Integrated Concepts The primary decay mode for the...Ch. 33 - Integrated Concepts Plans for an accelerator that...Ch. 33 - Integrated Concepts Suppose you are designing a...Ch. 33 - Integrated Concepts In supernovas, neutrinos are...Ch. 33 - Construct Your Own Problem Consider an...Ch. 33 - Construct Your Own Problem Consider a detector...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
7. Both Tim and Jan (problem 6) have a widow’s peak (see Module 9.8), but Mike has a straight hairline. What ar...
Campbell Biology: Concepts & Connections (9th Edition)
1. If an object is not moving, does that mean that there are no forces acting on it? Explain.
College Physics: A Strategic Approach (3rd Edition)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
21. Two -diameter aluminum electrodes are spaced apart.
The electrodes are connected to a battery.
...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
How do you think a cell performing cellular respiration rids itself of the resulting CO2?
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Some unstable elementary particle has a rest energy of 80.41 GeV and an uncertainty in rest energy of 2.06 GeV. Estimate the lifetime of this particle.arrow_forwardNuclear-powered rockets were researched for some years before safety concerns became paramount. (a) What fraction of a rocket's mass would have to be destroyed to get it into a low Earth orbit, neglecting the decrease in gravity? (Assume an orbital altitude of 250 km, and calculate both the kinetic energy (classical) and the gravitational potential energy needed.) (b) If the ship has a mass of 1.00105 kg (100 tons), what total yield nuclear explosion in tons of TNT is needed?arrow_forward(a) What is the kinetic energy in MeV of a ray that is traveling at 0.998c? This gives some idea of how energetic a ray must be to travel at nearly the same speed as a ray. (b) What is the velocity of the ray relative to the ray?arrow_forward
- The lifetime of a muon is 2.20 ?s. If you measured its mass to be 105.7 MeV/c2, what would be the minimum (Heisenberg) uncertainty in this value? Sketch the situation, defining all of your variablesarrow_forwardPls help ASAP.arrow_forwardMost of the particles known to physicists are unstable. For example, the lifetime of the neutral pion,π0, is about 8.4x10-17 s. Its mass is 135.0 MeV/c2. a) What is the energy width of the π0 in its ground state? b) What is the relative uncertainty ∆m/m of the pion’s mass?arrow_forward
- Provide the answers in 90 minutes, and count as 2 questions if needed.arrow_forwardWhat does your expression for vav−y give in the limit that H is zero?arrow_forwardAdvanced Physics Fermilab's arcelerator complex has been proposed to be utilized for a future muON-muon collider (muon: T1/2-2.2 us, m=105.66 MeV). It will produce muons by colliding proton bunches with a stationary target, resulting in an average of 10° muons per bunch. These muons will in turn be accelerated to 10 TeV (1 TeV=1012 eV) in the storage ring for particle-particle collisions. a. What is the velocity fraction b of the muons? b. What is the half-life of the muon in the storage ring? c. Considering the project requires at least 109 muons per single bunch, how long can we store each bunch before we need to inject a new one (in the laboratory reference frame)? Your answer Typed answers are easier for students to read than handwritten notes 曲, fx BIU A Aarrow_forward
- Two protons traveling at the same speed collide head‑on in a particle accelerator, causing the reaction p+p⟶p+n+?+ Calculate the minimum kinetic energy Kmin of each of the incident protons in megaelectronvolts. The π+ mass is 139.6 MeV/c2.arrow_forward4. Typical measurements of the mass of a A particle (1230 MeV/c²) are shown in the figure. Although the lifetime of the delta is much too short to measure directly, it can be calculated from the energy- time uncertainty principle. Estimate the lifetime from the full width at half-maximum of the mass measurement distribution shown. 25 MA Le 1000 1100 1200 1300 1400 1500 Mass of the delta particle M/ Number of mass me amare in each binarrow_forwardCalculate the speeds of the electrons from a 1 kV electron gun and from a 1 MV electron gun. The mass of the electron is 0.511 MeV or 9.109 * 10 ^ - 31 * kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill