EBK MECHANICS OF MATERIALS
7th Edition
ISBN: 8220100257063
Author: BEER
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.3, Problem 43P
A coder F, used to record in digital form the rotation of shaft A, is connected to the shaft by means of the gear train shown, which consists of four gears and three solid steel shafts each of diameter d. Two of the gears have a radius r and the other two a radius nr. If the rotation of the coder F is prevented, determine in terms of T, l, G, J, and n the angle through which end A rotates.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
in the epicyclic gear, annulus gear B has 120 teeth externally and 100 teeth internally. driver A has 20 teeth and the arms E is connected to the driven shaft. The Sun gear D has 60 teeth. If A revolves at 100 r.p.m clockwise and D revolves at 27 r.p.m clockwise. If gear D is fixed and A transmits a torque of 10 N.m at 100 r.p.m clockwise
A pickup truck is driving at a speed of 100 km/h on a leveled road. This truck has
4 wheels of the same diameter of 400 mm and drives at a gear ratio of 5 to 1 if
its gearbox 5th gear is selected. The gear's teeth are of involute form with a
module of 8 mm, an addendum is double the module, and the pressure angle is
equal to 20°.
1.1.
If the driving shaft of the front wheels of the truck is connected to the output shaft
of the gearbox, determine the number of teeth on the pinion to avoid interference
and the corresponding number of teeth on the gear wheel.
1.2.
Calculate the gear maximum velocity of sliding.
Each of two gears in a mesh has 60 teeth and a module of 6 mm. The teeth are of involute profile. The arc of contact is 2.5 times the circular pitch. Determine the addendum
Chapter 3 Solutions
EBK MECHANICS OF MATERIALS
Ch. 3.1 - Determine the torque T that causes a maximum...Ch. 3.1 - For the cylindrical shaft shown, determine the...Ch. 3.1 - (a) Determine the torque T that causes a maximum...Ch. 3.1 - (a) Determine the maximum shearing stress caused...Ch. 3.1 - (a) For the 3-in.-diameter solid cylinder and...Ch. 3.1 - Fig. P3.6 3.6 A torque T=3 kN m is applied to the...Ch. 3.1 - The solid spindle AB is made of a steel with an...Ch. 3.1 - The solid spindle AB has a diameter ds = 1.5 in....Ch. 3.1 - Fig. P3.9 and P3.10 3.10 The shafts of the pulley...Ch. 3.1 - Knowing that each of the shafts AB, BC, and CD...
Ch. 3.1 - Fig. P3.11 and P3.12 3.12 Knowing that an...Ch. 3.1 - Under normal operating conditions, the electric...Ch. 3.1 - In order to reduce the total mass of the assembly...Ch. 3.1 - The allowable shearing stress is 15 ksi in the...Ch. 3.1 - The allowable shearing stress is 15 ksi in the...Ch. 3.1 - The solid shaft shown is formed of a brass for...Ch. 3.1 - Solve Prob. 3.17 assuming that the direction of Tc...Ch. 3.1 - The solid rod AB has a diameter dAB= 60 mm and is...Ch. 3.1 - Fig. P3.19 and P3.20 3.20 The solid rod AB has a...Ch. 3.1 - A torque of magnitude T = 1000 N m is applied at D...Ch. 3.1 - Fig. P3.21 and P3.22 3.22 A torque of magnitude T...Ch. 3.1 - Under normal operating conditions a motor exerts a...Ch. 3.1 - Fig P3.23 and P3.24 3.24 Under normal operating...Ch. 3.1 - Prob. 25PCh. 3.1 - Fig. P3.25 and P3.26 3.26 The two solid shafts are...Ch. 3.1 - For the gear train shown, the diameters of the...Ch. 3.1 - Fig. P3.27 and P3.28 3.28 A torque T = 900 N m is...Ch. 3.1 - Fig. P3.29 3.29 While the exact distribution of...Ch. 3.1 - Fig. P3.30 3.30 (a) For a given allowable shearing...Ch. 3.3 - Determine the largest allowable diameter of a...Ch. 3.3 - The ship at A has just started to drill for oil on...Ch. 3.3 - (a) For the solid steel shaft shown, determine the...Ch. 3.3 - (a) For the aluminum pipe shown (G = 27 GPa),...Ch. 3.3 - The electric motor exerts a 500 N m-torque on the...Ch. 3.3 - The torques shown are exerted on pulleys and B....Ch. 3.3 - The aluminum rod BC (G = 26 GPa) is bonded to the...Ch. 3.3 - The aluminum rod AB (G = 27 GPa) is bonded to the...Ch. 3.3 - The solid spindle AB has a diameter ds = 1.75 in....Ch. 3.3 - Fig. p3.39 and p3.40 3.40 The solid spindle AB has...Ch. 3.3 - Two shafts, each of 78in. diameter, are connected...Ch. 3.3 - Two solid steel shafts each of 30-mm diameter, are...Ch. 3.3 - A coder F, used to record in digital form the...Ch. 3.3 - Fig. p3.43 3.44 For the gear train described in...Ch. 3.3 - The design specifications of a 1.2-m-long solid...Ch. 3.3 - 3.46 and 3.47 The solid cylindrical rod BC of...Ch. 3.3 - 3.46 and 3.47 The solid cylindrical rod BC of...Ch. 3.3 - The design of the gear-and-shaft system shown...Ch. 3.3 - The electric motor exerts a torque of 900 Nm on...Ch. 3.3 - A hole is punched at A in a plastic sheet by...Ch. 3.3 - The solid cylinders AB and BC are bonded together...Ch. 3.3 - Solve Prob. 3.51, assuming that cylinder AB is...Ch. 3.3 - The composite shaft shown consists of a...Ch. 3.3 - Fig. p3.53 and p3.54 3.54 The composite shaft...Ch. 3.3 - Two solid steel shafts (G = 77.2 GPa) are...Ch. 3.3 - Solve Prob. 3.55, assuming that the shaft AB is...Ch. 3.3 - 3.57 and 3.58 Two solid steel shafts are fitted...Ch. 3.3 - 3.57 and 3.58 Two solid steel shafts are fitted...Ch. 3.3 - The steel jacket CD has been attached to the...Ch. 3.3 - A torque T is applied as shown to a solid tapered...Ch. 3.3 - Prob. 61PCh. 3.3 - A solid shaft and a hollow shaft are made of the...Ch. 3.3 - An annular plate of thickness t and modulus G is...Ch. 3.5 - Determine the maximum shearing stress in a solid...Ch. 3.5 - Determine the maximum shearing stress in a solid...Ch. 3.5 - Using an allowable shearing stress of 4.5 ksi,...Ch. 3.5 - Using an allowable shearing stress of 50 MPa,...Ch. 3.5 - While a steel shaft of the cross section shown...Ch. 3.5 - Determine the required thickness of the 50-mm...Ch. 3.5 - A steel drive shaft is 6 ft long and its outer and...Ch. 3.5 - The hollow steel shaft shown (G = 77.2 GPa, all =...Ch. 3.5 - A steel pipe of 3.5-in. outer diameter is to be...Ch. 3.5 - 3.73 The design of a machine element calls for a...Ch. 3.5 - Three shafts and four gears are used to form a...Ch. 3.5 - Three shafts and four gears are used to form a...Ch. 3.5 - The two solid shafts and gears shown are used to...Ch. 3.5 - Fig. P3.76 and P3.77 3.77 The two solid shafts and...Ch. 3.5 - The shaft-disk-belt arrangement shown is used to...Ch. 3.5 - A 5-ft-long solid steel shaft of 0.875-in....Ch. 3.5 - A 2.5-m-long steel shaft of 30-mm diameter rotates...Ch. 3.5 - The design specifications of a 1.2-m-long solid...Ch. 3.5 - A 1.5-m-long tubular steel shaft (G = 77.2 GPa) of...Ch. 3.5 - Fig. P3.82 and P3.83 3.83 A 1.5-m-long tubular...Ch. 3.5 - The stepped shaft shown must transmit 40 kW at a...Ch. 3.5 - The stepped shaft shown rotates at 450 rpm....Ch. 3.5 - Knowing that the stepped shaft shown transmits a...Ch. 3.5 - The stepped shaft shown must rotate at a frequency...Ch. 3.5 - Fig. P3.87 and P3.88 3.88 The stepped shaft shown...Ch. 3.5 - A torque of magnitude T = 200 lbin. is applied to...Ch. 3.5 - Fig. P3.89, P3.90 and P3.91 3.90 In the stepped...Ch. 3.5 - In the stepped shaft shown, which has a full...Ch. 3.8 - The solid circular shaft shown is made of a steel...Ch. 3.8 - Prob. 93PCh. 3.8 - Prob. 94PCh. 3.8 - Prob. 95PCh. 3.8 - Fig. P3.95 and P3.96 3.96 The solid shaft shown is...Ch. 3.8 - It is observed that a straightened paper clip can...Ch. 3.8 - The solid shaft shown is made of a mild steel that...Ch. 3.8 - Prob. 99PCh. 3.8 - Prob. 100PCh. 3.8 - Prob. 101PCh. 3.8 - Prob. 102PCh. 3.8 - Prob. 103PCh. 3.8 - Prob. 104PCh. 3.8 - A solid circular rod is made of a material that is...Ch. 3.8 - Prob. 106PCh. 3.8 - Prob. 107PCh. 3.8 - Prob. 108PCh. 3.8 - Prob. 109PCh. 3.8 - Prob. 110PCh. 3.8 - Prob. 111PCh. 3.8 - A 50-mm diameter cylinder is made of a brass for...Ch. 3.8 - Prob. 113PCh. 3.8 - The solid circular drill rod AB is made of a steel...Ch. 3.8 - Prob. 115PCh. 3.8 - Prob. 116PCh. 3.8 - After the solid shaft of Prob. 3.116 has been...Ch. 3.8 - The hollow shaft shown is made of a steel that is...Ch. 3.8 - Prob. 119PCh. 3.8 - Prob. 120PCh. 3.10 - Determine the smallest allowable square cross...Ch. 3.10 - Prob. 122PCh. 3.10 - Using all = 70 MPa and G = 27 GPa, determine for...Ch. 3.10 - Prob. 124PCh. 3.10 - Determine the largest torque T that can be applied...Ch. 3.10 - Each of the two brass bars shown is subjected to a...Ch. 3.10 - Prob. 127PCh. 3.10 - Prob. 128PCh. 3.10 - Prob. 129PCh. 3.10 - Shafts A and B are made of the same material and...Ch. 3.10 - Prob. 131PCh. 3.10 - Shafts A and B are made of the same material and...Ch. 3.10 - Prob. 133PCh. 3.10 - Prob. 134PCh. 3.10 - Prob. 135PCh. 3.10 - A 36-kipin. torque is applied to a 10-ft-long...Ch. 3.10 - A 4-m-long steel member has a W310 60 cross...Ch. 3.10 - Prob. 138PCh. 3.10 - A 5-kipft torque is applied to a hollow aluminum...Ch. 3.10 - A torque T = 750 kNm is applied to the hollow...Ch. 3.10 - A 750-Nm torque is applied to a hollow shaft...Ch. 3.10 - 3.142 and 3.143 A hollow member having the cross...Ch. 3.10 - A hollow member having the cross section shown is...Ch. 3.10 - A 90-Nm torque is applied to a hollow shaft having...Ch. 3.10 - 3.145 and 3.146 A hollow member having the cross...Ch. 3.10 - 3.145 and 3.146 A hollow member having the cross...Ch. 3.10 - A cooling tube having the cross section shown is...Ch. 3.10 - A hollow cylindrical shaft was designed to have a...Ch. 3.10 - Equal torques are applied to thin-walled tubes of...Ch. 3.10 - A hollow cylindrical shaft of length L, mean...Ch. 3 - A steel pipe of 12-in. outer diameter is...Ch. 3 - A torque of magnitude T = 120 Nm is applied to...Ch. 3 - Fig. P3.152 3.153 Two solid shafts are connected...Ch. 3 - Prob. 154RPCh. 3 - Prob. 155RPCh. 3 - A torque of magnitude T = 4 kNm is applied at end...Ch. 3 - Ends A and D of the two solid steel shafts AB and...Ch. 3 - As the hollow steel shaft shown rotates at 180...Ch. 3 - Prob. 159RPCh. 3 - Prob. 160RPCh. 3 - Prob. 161RPCh. 3 - The shaft AB is made of a material that is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The four gears shown are attached to a steel shaft that is rotating at 2 Hz. Gear B supplies 70 kW of power to the shaft. Of that power, 20kW are used by gear A, 20 kW by gear C and 30kW by gear D. G=83 GPa for steel -20KW JOKN -20kw -30kW 2m 1.5m 1.5m B (a) If a uniform shaft diameter of 125 mm B speci fied, detenmine the angle of rotation of A relative to D. O f segment Co is to be replaced lay a hollaw Shaft with an inside diameter of 80 mm, what is the outside diameter if the stress is not to excced 70 MPa.arrow_forward1. A inotor carrying XI-4. In a brick-making machine is found this train of gears. pulley E, which is 6 in. in diameter, drives the machine. The wide-faced roller F, 12 in. in diameter, drives a conveyor belt. If the motor runs at 1200 rpm, what is the speed of the conveyor belt in feet per minute? (Neglect the thickness of the belt.) 12 T. 144 12 T 27 T. 108 T 48 Dia, PROB. XI-4 (proved that answer is 17. ft/_)arrow_forwardA simplified gear system for a mechanical watch is shown. Know that gear A has a constant angular velocity of 1 rev/h and gear Chas a constant angular velocity of 1 rpm. Given: dh=0.5 in. and ch=0.37 in. d2 A. d1 Determine the radius r. (You must provide an answer before moving on to the next part.) The radius ris in.arrow_forward
- Nonearrow_forwardFor the epicyclic gear train shown, wheels B and C are rigidly attached to the input shaft (p) and they rotate at the same speed as the input shaft. The teeth numbers of the wheels are as given. D=90, B=30, C=20, E=100 Determine the output shaft speed (q) and its direction with respect to the input shaft, when: a. Only wheel D is fixed b. Only wheel E is fixed b. C B The input shaft rotates at 1200 rpm. You are required to forum two tablesarrow_forwardAn epicyclic train of gears is arranged as shown in Fig. How manyrevolutions does the arm, to which the pinions B and C are attached, make :1. when A makes one revolution clockwise and D makes half a revolutionanticlockwise, and 2. when A makes one revolution clockwise and D isstationary ? The number of teeth on the gears A and D are 40 and 90respectively.arrow_forward
- Plate gear C of this gear system are carried on the arm A and free to rotated. the pitch circle diameter of the internally toothed ring gear D is to be 214 mm and the module 4 mm. When the ring gear D is stationary, the arm A, which carries three planet wheels C of equal size, is to make one revolution in the same direction as the sun wheel B for every five revolutions of the driving spindle carrying the sunwheel B.Determine suitable number of teeth for all the wheels and the exact diameter of pitch circle of the ring.1.1.Calculate the number of teeth of the ring gear D.(3)1.2.State an equation tha relate the number of teeth of gear D, B and C.(1)1.3.Use the table method to calculate the number of teeth of gear B.(13)1.4.Calculate the number of teeth for gear C.arrow_forwardThe spur gearing arrangement made of two parallel shafts,whose pitch circle diameters of driven and driver gears are 86cm and 37cm respectively. If driven shaft runs with 10 r.p.s,determine the following; ( 1. Center distance between the two shafts in mm. 2. Speed of driver shaft in rpm 3. Velocity ratio 4. Number of teeth's on driver and driven shaft for the given module 8mmarrow_forwardProblem 2: Consider the two gears mounted on the shaft, as shown. Distances are L1 = 100 mm, L2 = 250 mm, and L3 = 175 mm. Diameter of shaft AB is 15 mm, diameter of shaft BC is 20 mm, and diameter of shaft CD is 17.5 mm. Young's modulus for each portion is 200 GPa. Determine the displacement of point D with reference to point A. Also, determine the displacement of point A relative to C. b. Determine the axial strain at any point in shaft segments AB, BC and CD, respectively. If Poisson's ratio for the material of the shafts is v = 0.2, determine the lateral strain in each of the shaft segments. Based on your answers to part (a), do the gears move towards each other, or do they separate from each other? Note that in real gearboxes, movement of gears towards or away from each other is prevented by using thrust bearings. 10 kN 4 kN 5 kN 7 kN 4 kN NY 0I 17.arrow_forward
- The lath machine in the university mechanical workshop uses epicyclic gear train shown in Figure 1 to operate. Plate gear Cof this gear system are carried on the arm A and free to rotated. the pitch circle diameter of the internally toothed ring gear D is to be 214 mm and the module 4 mm. When the ring gear D is stationary, the arm A, which carries three planet wheels C of equal size, is to make one revolution in the same direction as thesun wheel B for every five revolutions of the driving spindle carrying the sunwheel B.Determine suitable number of teeth for all the wheels and the exact diameter of pitch circle of the ring.1.1. Calculate the number of teeth of the ring gear D. 1.2. State an equation tha relate the number of teeth of gear D, B and C. 1.3. Use the table method to calculate the number of teeth of gear B. 1.4. Calculate the number of teeth for gear C.arrow_forwardQ2:- In an epicyclic gear train shown in the Fig. b, the internal wheels A and F and the compound wheel C,D rotate about the axis O. The wheels B and E rotate on pin fixed to the arm L. The wheels have the same pitch and the numbers of teeth are: B and E 18, C 28 and D 26. If the arm L makes 150 rpm clockwise, find the speed of F when (a) the wheel A is fixed; and (b) the wheel A makes 15 rpm counterclockwise. F D.arrow_forwardThe lathe machine in the Central University of Technology mechanical workshop uses epicyclic gear train in Figure 1 to operate. Plate gear C of this gear system are carried on the arm A and free to rotate. The pitch circle diameter of the internally toothed ring gear D is to be 214 mm and the module 4 mm. When the ring gear D is stationary, the arm A, which carries three planet wheels C of equal size, is to make one revolution in the same direction as the sun wheel B for every five revolution of the driving spindle carrying the sunwheel B. 1.1)Calculate the number of teeth of the ring gear D. 1.2)State an equation that relates the number of teeth of gear D, B and C. 1.3)Use the table method to calculate the number of teeth of gear B. 1.5)Calculate the number of teeth for gear C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Transmission; Author: Terry Brown Mechanical Engineering;https://www.youtube.com/watch?v=YVm4LNVp1vA;License: Standard Youtube License