Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 33, Problem 40P
Repeat Problem 39, now assuming that civilization B lags A by 1.2 million years in the galaxy’s reference frame.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If a 20 yr. old astronaut left to explore the galaxy in 2010 travelling at 1.30 x 108 m/s and returned in 2040, how old would she appear to be
The Millennium Falcon is approximately 35.2 m long. There are conflicting reports, but the Falcon made the Kessel Run in approximately 12.27 parsecs. This is an odd unit to measure speed with as a parsec is a unit of length
equal to 3.26 light-year. The science FICTION comes in when you consider that ships in Star Wars use hyperdrive to travel faster than the speed of light, so they are able to make jumps through space. Han Solo picked difficult
or dangerous points to jump between to make the trip so short. Let's imagine that the Millennium Falcon travels at 0.96c during the 12.27 parsec Kessel Run.
What distance, in light-year, does an observer at the finish line measure for the trip? Don't forget to convert parsec to light-year.
X light-year
What distance, in light-year, does Han Solo measure for the trip as he pilots the ship?
light-year
Which person measures the proper distance of the trip?
Which person would measure the proper length of the Millennium Falcon?
The Millennium Falcon is approximately 35.8 m long. There are conflicting reports, but the Falcon made the Kessel Run in
approximately 12.86 parsecs. This is an odd unit to measure speed with as a parsec is a unit of length equal to 3.26 light-year. The
science FICTION comes in when you consider that ships in Star Wars use hyperdrive to travel faster than the speed of light, so they
are able to make jumps through space. Han Solo picked difficult or dangerous points to jump between to make the trip so short.
Let's imagine that the Millennium Falcon travels at 0.97c during the 12.86 parsec Kessel Run.
What distance, in light-year, does an observer at the finish line measure for the trip? Don't forget to convert parsec to light-year.
light-year
What distance, in light-year, does Han Solo measure for the trip as he pilots the ship?
light-year
Which person measures the proper distance of the trip?
Which person would measure the proper length of the Millennium Falcon?
✪
Chapter 33 Solutions
Essential University Physics (3rd Edition)
Ch. 33.2 - Prob. 33.1GICh. 33.4 - Triplets A and B board spaceships and head away...Ch. 33.5 - A comet plunges into the planet Jupiter. At the...Ch. 33.7 - The rest energy of a proton is 938 MeV. Without...Ch. 33 - Why was the Michelson-Morley experiment a more...Ch. 33 - Why was it necessary to repeat the...Ch. 33 - Prob. 3FTDCh. 33 - Does relativity require that the speed of sound be...Ch. 33 - Time dilation is sometimes described by saying...Ch. 33 - If youre in a spaceship moving at 0.95c relative...
Ch. 33 - The Andromeda Galaxy is 2 million light years from...Ch. 33 - Prob. 8FTDCh. 33 - Prob. 9FTDCh. 33 - The rest energy of an electron is 511 keV. Whats...Ch. 33 - An atom in an excited state emits a burst of...Ch. 33 - The quantity EB is invariant. What does this say...Ch. 33 - An airplane makes a round trip between two points...Ch. 33 - Consider a Michelson-Morley experiment with 11-m...Ch. 33 - Two stars are 50 ly apart, measured in their...Ch. 33 - How long would it take a spacecraft traveling at...Ch. 33 - A spaceship passes by you at half the speed of...Ch. 33 - An extraterrestrial spacecraft whizzes through the...Ch. 33 - How fast would you have to move relative to a...Ch. 33 - A hospitals linear accelerator produces electron...Ch. 33 - Prob. 21ECh. 33 - At what speed will the momentum of a proton (mass...Ch. 33 - Prob. 23ECh. 33 - A particle is moving at 0.90c. If its speed...Ch. 33 - Find (a) the total energy and (b) the kinetic...Ch. 33 - At what speed will the relativistic and Newtonian...Ch. 33 - Show that the time of Equation 33.2 is longer than...Ch. 33 - Youre designing a Michelson interferometer in...Ch. 33 - Earth and Sun are 8.3 light minutes apart, as...Ch. 33 - Youre the communications officer on a fast...Ch. 33 - You wish to travel to a star N light years from...Ch. 33 - The nearest star beyond our solar system is about...Ch. 33 - Twins A and B live on Earth. On their 20th...Ch. 33 - Radioactive oxygen-15 decays at such a rate that...Ch. 33 - Two distant galaxies are receding from Earth at...Ch. 33 - Two spaceships are racing. The slower one passes...Ch. 33 - Use relativistic velocity addition to show that if...Ch. 33 - Earth and Sun arc 8.33 light minutes apart. Event...Ch. 33 - Youre writing a galactic history involving two...Ch. 33 - Repeat Problem 39, now assuming that civilization...Ch. 33 - Could there be observers who would judge the two...Ch. 33 - Could there be observers who would judge the two...Ch. 33 - The Curiosity rover touched down on Mars when...Ch. 33 - Derive the Lorentz transformations for time from...Ch. 33 - In the light box of Fig. 33.6, let event A be the...Ch. 33 - Youre a consultant for the director of a sci-fi...Ch. 33 - How fast would you have to go to reach a star 240...Ch. 33 - An advanced civilization has developed a spaceship...Ch. 33 - A spaceship travels at 0.80c from Earth to a star...Ch. 33 - Use Equation 33.6 to calculate the square of the...Ch. 33 - A light beam is emitted at event A and arrives at...Ch. 33 - Compare the momentum changes needed to boost a...Ch. 33 - Event A occurs at x = 0 and t = 0 in reference...Ch. 33 - When a particle's speed doubles, its momentum...Ch. 33 - Find (a) the speed and (b) the momentum of a...Ch. 33 - Prob. 56PCh. 33 - A large city consumes electrical energy at the...Ch. 33 - In a nuclear-fusion reaction, two deuterium nuclei...Ch. 33 - Find the kinetic energy of an electron moving at...Ch. 33 - Find the speed of an electron with kinetic energy...Ch. 33 - Use the binomial approximation (Appendix A) to...Ch. 33 - Prob. 62PCh. 33 - Show from the Lorentz transformations that the...Ch. 33 - Prob. 64PCh. 33 - Prob. 65PCh. 33 - The highest-energy cosmic rays ever detected are...Ch. 33 - When an objects speed increases by 5%, its...Ch. 33 - Use the Lorentz transformations to show that if...Ch. 33 - A source emitting light with frequency f moves...Ch. 33 - Equation 33.5a transforms the velocity u of an...Ch. 33 - Consider a relativistic particle of mass m moving...Ch. 33 - Find the speed of a particle whose relativistic...Ch. 33 - Its the 24th century, and you're a curator at the...Ch. 33 - Consider a line of positive charge with line...Ch. 33 - Prob. 75PCh. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...
Additional Science Textbook Solutions
Find more solutions based on key concepts
25. The 100 kg block in FIGURE EX7.25 takes 6.0 s to reach the floor after being released from rest. What is th...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
(II) A transverse traveling wave on a cord is represented by D = 0.22 sin (5.6x + 34t) where D and x are in met...
Physics for Scientists and Engineers with Modern Physics
The rate of heat conduction out of a window on a winter day is rapid enough to chill the air next to it To see ...
University Physics Volume 2
61. (I) (a) What is the angular momentum of a 2.8-kg uniform cylindrical grinding wheel of radius 28 cm when ro...
Physics: Principles with Applications
89. What is the danger posed by people in the balcony of an auditorium stamping their feet in a steady rhythm?
Conceptual Physical Science (6th Edition)
A horizontal piston-cylinder system containing n mol of ideal gas is surrounded by air at temperature T0 and pr...
Essential University Physics: Volume 1 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Using our example from the previous unit, let's try to determine the Hubble time for this example universe. You were given that a good representative galaxy receded at a speed of 4000 km/s and was found to be 20 Mpc away. With that in mind, what would the age of that universe be in years (aka what is that universe's Hubble time)? Go ahead and take the number of kilometers per Mpc to be approximately 3.1*10^19 km/Mpc. While this problem may look scary at first, this is really just bringing you full circle to one of the unit conversion problems you encountered at the beginning of this course.arrow_forwardThe Millennium Falcon is approximately 35.2 m long. There are conflicting reports, but the Fàlcon made the Kessel Run in approximately 12.95 parsecs. This is an odd unit to measure speed with as a parsec is a unit of length equal to 3.26 light-year. The science FICTION comes in when you consider that ships in Star Wars use hyperdrive to travel faster than the speed of light, so they are able to make jumps through space. Han Solo picked difficult or dangerous points to jump between to make the trip so short.tet's imagine that the Millennium Falcon travels at 0.95c during the 12.95 parsec Kessel Run. What distance, in light-year, does an observer at the finish line measure for the trip? Don't forget to convert parsec to light-year. light-year What distance, in light-year, does Han Solo measure for the trip as he pilots the ship? | light-yeararrow_forwardSuppose a galaxy is moving away from Earth at a speed 0.78c. It emits radio waves with a wavelength of 0.489 m. What wavelength would we detect on Earth?arrow_forward
- The matter density in the Universe today is ?m=2.7×10−27kgm−3. What would be the value of the density parameter, Ω0, if the Hubble constant had the value H0 = 38 km/s/Mpc?arrow_forwardSuppose we find an Earth-like planet around one of our nearest stellar neighbors, Alpha Centauri (located only 4.4 light-years away). If we launched a "generation ship" at a constant speed of 1500.00 km/s from Earth with a group of people whose descendants will explore and colonize this planet, how many years before the generation ship reached Alpha Centauri? (Note there are 9.46 ××1012 km in a light-year and 31.6 million seconds in a year.arrow_forwardSuppose a galaxy is moving away from Earth at a speed of 0.78c. It emits radio waves of 0.680 m. What wavelength would we detect on Earth? with a wavelengtharrow_forward
- According to the standard Big Bang theory (neglecting any effects of cosmic acceleration), what is the maximum possible age of the universe if H0 = 50 km/s/Mpc? 70 km/s/Mpc? 80 km/s/Mpc?arrow_forwardSuppose a spaceship has the mass of a typical ocean cruise ship, then it can be assumed that it has a mass of 2.1 × 108 kg. Consider the kinetic energy required at 13 % of the speed of light. If energy to get a spaceship to cruising speed is generated using matter-antimatter annihilation, what mass of antimatter in kg is required? Hint: Matter-antimatter annihilation converts an entire mass of matter and antimatter into pure energy with no loss.arrow_forwardSuppose a spaceship has the mass of a typical ocean cruise ship, then it can be assumed that it has a mass of 3.1 × 108 kg. Consider the kinetic energy required at 13 % of the speed of light. If energy to get a spaceship to cruising speed is generated using matter-antimatter annihilation, what mass of antimatter in kg is required?Hint: Matter-antimatter annihilation converts an entire mass of matter and antimatter into pure energy with no loss.arrow_forward
- It is possible to derive the age of the universe given the value of the Hubble constant and the distance to a galaxy, again with the assumption that the value of the Hubble constant has not changed since the Big Bang. Consider a galaxy at a distance of 235 million light-years receding from us at a velocity, v. If the Hubble constant is 20.5 km/s per million light-years, what is its velocity? (Enter the magnitude in km/s.) _________ km/sarrow_forwardA galaxy is observed to recede from Earth with an approximate speed of 0.81c. Approximately how far d from Earth is this galaxy? Give an answer in units of megaparsecs (Mpc). d = ? Mpc How long ago t was the light that we see emitted by the galaxy? Give an answer in units of years. t = ? yearsarrow_forwardWhat is the spatial radius of curvature for a hypothetical closed universe at a moment of time with given values below. Give the answer in units of Mpc, to the nearest integer (not in scientific notation - e.g., 1234). Values: H = 51 km s-1 Mpc-1 ρ = 2.9x10-26 kg m-3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY