Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 33, Problem 68P
Use the Lorentz transformations to show that if two events are separated in space and time so that a light signal leaving one event cannot reach the other, then there is an observer for whom the two events are simultaneous. Show that the converse is also true: If a light signal can get from one event to the other, then no observer will find them simultaneous.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 33 Solutions
Essential University Physics (3rd Edition)
Ch. 33.2 - Prob. 33.1GICh. 33.4 - Triplets A and B board spaceships and head away...Ch. 33.5 - A comet plunges into the planet Jupiter. At the...Ch. 33.7 - The rest energy of a proton is 938 MeV. Without...Ch. 33 - Why was the Michelson-Morley experiment a more...Ch. 33 - Why was it necessary to repeat the...Ch. 33 - Prob. 3FTDCh. 33 - Does relativity require that the speed of sound be...Ch. 33 - Time dilation is sometimes described by saying...Ch. 33 - If youre in a spaceship moving at 0.95c relative...
Ch. 33 - The Andromeda Galaxy is 2 million light years from...Ch. 33 - Prob. 8FTDCh. 33 - Prob. 9FTDCh. 33 - The rest energy of an electron is 511 keV. Whats...Ch. 33 - An atom in an excited state emits a burst of...Ch. 33 - The quantity EB is invariant. What does this say...Ch. 33 - An airplane makes a round trip between two points...Ch. 33 - Consider a Michelson-Morley experiment with 11-m...Ch. 33 - Two stars are 50 ly apart, measured in their...Ch. 33 - How long would it take a spacecraft traveling at...Ch. 33 - A spaceship passes by you at half the speed of...Ch. 33 - An extraterrestrial spacecraft whizzes through the...Ch. 33 - How fast would you have to move relative to a...Ch. 33 - A hospitals linear accelerator produces electron...Ch. 33 - Prob. 21ECh. 33 - At what speed will the momentum of a proton (mass...Ch. 33 - Prob. 23ECh. 33 - A particle is moving at 0.90c. If its speed...Ch. 33 - Find (a) the total energy and (b) the kinetic...Ch. 33 - At what speed will the relativistic and Newtonian...Ch. 33 - Show that the time of Equation 33.2 is longer than...Ch. 33 - Youre designing a Michelson interferometer in...Ch. 33 - Earth and Sun are 8.3 light minutes apart, as...Ch. 33 - Youre the communications officer on a fast...Ch. 33 - You wish to travel to a star N light years from...Ch. 33 - The nearest star beyond our solar system is about...Ch. 33 - Twins A and B live on Earth. On their 20th...Ch. 33 - Radioactive oxygen-15 decays at such a rate that...Ch. 33 - Two distant galaxies are receding from Earth at...Ch. 33 - Two spaceships are racing. The slower one passes...Ch. 33 - Use relativistic velocity addition to show that if...Ch. 33 - Earth and Sun arc 8.33 light minutes apart. Event...Ch. 33 - Youre writing a galactic history involving two...Ch. 33 - Repeat Problem 39, now assuming that civilization...Ch. 33 - Could there be observers who would judge the two...Ch. 33 - Could there be observers who would judge the two...Ch. 33 - The Curiosity rover touched down on Mars when...Ch. 33 - Derive the Lorentz transformations for time from...Ch. 33 - In the light box of Fig. 33.6, let event A be the...Ch. 33 - Youre a consultant for the director of a sci-fi...Ch. 33 - How fast would you have to go to reach a star 240...Ch. 33 - An advanced civilization has developed a spaceship...Ch. 33 - A spaceship travels at 0.80c from Earth to a star...Ch. 33 - Use Equation 33.6 to calculate the square of the...Ch. 33 - A light beam is emitted at event A and arrives at...Ch. 33 - Compare the momentum changes needed to boost a...Ch. 33 - Event A occurs at x = 0 and t = 0 in reference...Ch. 33 - When a particle's speed doubles, its momentum...Ch. 33 - Find (a) the speed and (b) the momentum of a...Ch. 33 - Prob. 56PCh. 33 - A large city consumes electrical energy at the...Ch. 33 - In a nuclear-fusion reaction, two deuterium nuclei...Ch. 33 - Find the kinetic energy of an electron moving at...Ch. 33 - Find the speed of an electron with kinetic energy...Ch. 33 - Use the binomial approximation (Appendix A) to...Ch. 33 - Prob. 62PCh. 33 - Show from the Lorentz transformations that the...Ch. 33 - Prob. 64PCh. 33 - Prob. 65PCh. 33 - The highest-energy cosmic rays ever detected are...Ch. 33 - When an objects speed increases by 5%, its...Ch. 33 - Use the Lorentz transformations to show that if...Ch. 33 - A source emitting light with frequency f moves...Ch. 33 - Equation 33.5a transforms the velocity u of an...Ch. 33 - Consider a relativistic particle of mass m moving...Ch. 33 - Find the speed of a particle whose relativistic...Ch. 33 - Its the 24th century, and you're a curator at the...Ch. 33 - Consider a line of positive charge with line...Ch. 33 - Prob. 75PCh. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. What is the typical hydrogen content (...
Cosmic Perspective Fundamentals
Bio Magnetic fields and MRI. Magnetic resonance imaging (MRI) is a powerful imaging method that, unlike x-ray i...
College Physics (10th Edition)
Choose the best answer to each of the following. Explain your reasoning. The solar nebula was 98% (a) rock and ...
The Cosmic Perspective Fundamentals (2nd Edition)
Radio astronomers detect electromagnetic radiation at a frequency of 42 MHz from an interstellar gas cloud. If ...
Essential University Physics: Volume 2 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that for a particle is invariant under Lorentz transformations.arrow_forwardAn observer standing by the railroad tracks sees two bolts of lightning strike the ends of a 500-m-long train simultaneously at the instant the middle of the train passes him at 50 m/s. Use the Lorentz transformation to find the time between the lightning strikes as measured by a passenger seated in the middle of the train.arrow_forwardThe mass of the fuel in a nuclear reactor decreases by an observable amount as it puts out energy. Is the same true for the coal and oxygen combined in a conventional power plant? If so, is this observable in practice for the coal and oxygen? Explain.arrow_forward
- A yet-to-be-built spacecraft starts from Earth moving at constant speed to the yet-to-be-discovered planet Retah, which is 20 lighthours away from Earth. It takes 25 h (according to an Earth observer) for a spacecraft to reach this planet. Assuming that the clocks are synchronized at the beginning of the journey, compare the time elapsed in the spacecraft’s frame for this one-way journey with the time elapsed as measured by an Earth-based clock.arrow_forwardAs measured by observers in a reference frame S, a particle having charge q moves with velocity v in a magnetic field B and an electric field E. The resulting force on the particle is then measured to be F = q(E + v × B). Another observer moves along with the charged particle and measures its charge to be q also but measures the electric field to be E′. If both observers are to measure the same force, F, show that E′ = E + v × B.arrow_forwardCheck Your Understanding a. A particle travels at 1.90108m/sand lives 2.10108swhen at rest relative to an observer. How long does the particle live as viewed in the laboratory? b. Space craft A and B pass in opposite directions at a relative speed of 4.00107m/s . An internal clock in space craft A causes it to emit a radio signal for 1.00 s. The computer in spacecraft B corrects for the beginning and end of the signal having traveled different distances, to calculate the time interval during which ship A was emitting the signal. What is the time interval that the computer in spacecraft B calculates?arrow_forward
- Owen and Dina are at rest in frame S, which is moving at 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P9.63). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina? Figure P9.63arrow_forwardSuppose our Sun is about to explode. In an effort to escape, we depart in a spaceship at v = 0.80c and head toward the star Tau Ceti, 12 lightyears away. When we reach the midpoint of our journey from the Earth, we see our Sun explode and, unfortunately, at the same instant we see Tau Ceti explode as well. (a) In the spaceship’s frame of reference, should we conclude that the two explosions occurred simultaneously? If not, which occurred first? (b) In a frame of reference in which the Sun and Tau Ceti are at rest, did they explode simultaneously? If not, which exploded first?arrow_forwardTwo astronomical events are observed to occur at a time of 0.30 s apart and a distance separation of 2.0109m from each other. How fast must a spacecraft travel from the site of one event toward the other to make the events occur at the same time when measured in the frame of reference of the spacecraft?arrow_forward
- Suppose the primed and laboratory observers want to measure the length of a rod that rests on the ground horizontally in the space between the helicopter and the tower (Fig. 39.8B). To derive the length transformation L = L (Eq. 39.5), we had to assume that the positions of the two ends were determined simultaneously. What happens to the length transformation equation if both observers measure the end below the helicopter at one time t1 and the other end at a later time t2?arrow_forwardAn observer sees two events 1.5108s apart at a separation of 800 m. How fast must a second observer be moving relative to the first to see the two events occur simultaneously?arrow_forwardSuppose the observer O on the train in Active Figure 9.5 aims her flashlight at the far wall of the boxcar and turns it on and off, sending a pulse of light toward the far wall. Both O and O measure the time interval between when the pulse leaves the flashlight and when it hits the far wall. Which observer measures the proper time interval between these two events? (a) O (b) O (c) both observers (d) neither observerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY