Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 33, Problem 20E
A hospital’s linear accelerator produces electron beams for cancer treatment. The accelerator is 1.6 m long and the electrons reach a speed of 0.98c. How long is the accelerator in the electrons’ reference frame?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 33 Solutions
Essential University Physics (3rd Edition)
Ch. 33.2 - Prob. 33.1GICh. 33.4 - Triplets A and B board spaceships and head away...Ch. 33.5 - A comet plunges into the planet Jupiter. At the...Ch. 33.7 - The rest energy of a proton is 938 MeV. Without...Ch. 33 - Why was the Michelson-Morley experiment a more...Ch. 33 - Why was it necessary to repeat the...Ch. 33 - Prob. 3FTDCh. 33 - Does relativity require that the speed of sound be...Ch. 33 - Time dilation is sometimes described by saying...Ch. 33 - If youre in a spaceship moving at 0.95c relative...
Ch. 33 - The Andromeda Galaxy is 2 million light years from...Ch. 33 - Prob. 8FTDCh. 33 - Prob. 9FTDCh. 33 - The rest energy of an electron is 511 keV. Whats...Ch. 33 - An atom in an excited state emits a burst of...Ch. 33 - The quantity EB is invariant. What does this say...Ch. 33 - An airplane makes a round trip between two points...Ch. 33 - Consider a Michelson-Morley experiment with 11-m...Ch. 33 - Two stars are 50 ly apart, measured in their...Ch. 33 - How long would it take a spacecraft traveling at...Ch. 33 - A spaceship passes by you at half the speed of...Ch. 33 - An extraterrestrial spacecraft whizzes through the...Ch. 33 - How fast would you have to move relative to a...Ch. 33 - A hospitals linear accelerator produces electron...Ch. 33 - Prob. 21ECh. 33 - At what speed will the momentum of a proton (mass...Ch. 33 - Prob. 23ECh. 33 - A particle is moving at 0.90c. If its speed...Ch. 33 - Find (a) the total energy and (b) the kinetic...Ch. 33 - At what speed will the relativistic and Newtonian...Ch. 33 - Show that the time of Equation 33.2 is longer than...Ch. 33 - Youre designing a Michelson interferometer in...Ch. 33 - Earth and Sun are 8.3 light minutes apart, as...Ch. 33 - Youre the communications officer on a fast...Ch. 33 - You wish to travel to a star N light years from...Ch. 33 - The nearest star beyond our solar system is about...Ch. 33 - Twins A and B live on Earth. On their 20th...Ch. 33 - Radioactive oxygen-15 decays at such a rate that...Ch. 33 - Two distant galaxies are receding from Earth at...Ch. 33 - Two spaceships are racing. The slower one passes...Ch. 33 - Use relativistic velocity addition to show that if...Ch. 33 - Earth and Sun arc 8.33 light minutes apart. Event...Ch. 33 - Youre writing a galactic history involving two...Ch. 33 - Repeat Problem 39, now assuming that civilization...Ch. 33 - Could there be observers who would judge the two...Ch. 33 - Could there be observers who would judge the two...Ch. 33 - The Curiosity rover touched down on Mars when...Ch. 33 - Derive the Lorentz transformations for time from...Ch. 33 - In the light box of Fig. 33.6, let event A be the...Ch. 33 - Youre a consultant for the director of a sci-fi...Ch. 33 - How fast would you have to go to reach a star 240...Ch. 33 - An advanced civilization has developed a spaceship...Ch. 33 - A spaceship travels at 0.80c from Earth to a star...Ch. 33 - Use Equation 33.6 to calculate the square of the...Ch. 33 - A light beam is emitted at event A and arrives at...Ch. 33 - Compare the momentum changes needed to boost a...Ch. 33 - Event A occurs at x = 0 and t = 0 in reference...Ch. 33 - When a particle's speed doubles, its momentum...Ch. 33 - Find (a) the speed and (b) the momentum of a...Ch. 33 - Prob. 56PCh. 33 - A large city consumes electrical energy at the...Ch. 33 - In a nuclear-fusion reaction, two deuterium nuclei...Ch. 33 - Find the kinetic energy of an electron moving at...Ch. 33 - Find the speed of an electron with kinetic energy...Ch. 33 - Use the binomial approximation (Appendix A) to...Ch. 33 - Prob. 62PCh. 33 - Show from the Lorentz transformations that the...Ch. 33 - Prob. 64PCh. 33 - Prob. 65PCh. 33 - The highest-energy cosmic rays ever detected are...Ch. 33 - When an objects speed increases by 5%, its...Ch. 33 - Use the Lorentz transformations to show that if...Ch. 33 - A source emitting light with frequency f moves...Ch. 33 - Equation 33.5a transforms the velocity u of an...Ch. 33 - Consider a relativistic particle of mass m moving...Ch. 33 - Find the speed of a particle whose relativistic...Ch. 33 - Its the 24th century, and you're a curator at the...Ch. 33 - Consider a line of positive charge with line...Ch. 33 - Prob. 75PCh. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A uniform rod of mass 200 g and length 100 cm is free to rotate in a horizontal plane around a fixed vertical a...
University Physics Volume 1
An ideal gas is made to undergo the cyclic process shown in Figure 1.10 (a). For each of the steps A, B, and C,...
An Introduction to Thermal Physics
61. (I) (a) What is the angular momentum of a 2.8-kg uniform cylindrical grinding wheel of radius 28 cm when ro...
Physics: Principles with Applications
The torque if the object rotated about x− axis.
Physics (5th Edition)
11. A ball thrown horizontally at 25 m/s travels a horizontal distance of 50 m before hitting the ground. From...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Why is the Drake equation limited to our galaxy?
Conceptual Integrated Science
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Joe and Moe are twins. In the laboratory frame at location S1 (2.00 km, 0.200 km, 0.150 km). Joe shoots a picture for aduration of t= 12.0 s. For the same duration as measured inthe laboratory frame, at location S2 (1.00 km, 0.200 km,0.300 km), Moe also shoots a picture. Both Joe and Moe begintaking their pictures at t = 0 in the laboratory frame. Determine the duration of each event as measured by an observer ina frame moving at a speed of 2.00 108 m/s along the x axisin the positive x direction. Assume that at t = t = 0, the origins of the two frames coincide.arrow_forwardAn alien spaceship traveling at 0.600c toward the Earth launches a landing craft. The landing craft travels in the same direction with a speed of 0.800c relative to the mother ship. As measured on the Earth, the spaceship is 0.200 ly from the Earth when the landing craft is launched. (a) What speed do the Earth-based observers measure for the approaching landing craft? (b) What is the distance to the Earth at the moment of the landing crafts launch as measured by the aliens? (c) What travel time is required for the landing craft to reach the Earth as measured by the aliens on the mother ship? (d) If the landing craft has a mass of 4.00 105 kg, what is its kinetic energy as measured in the Earth reference frame?arrow_forwardAn observer in a coasting spacecraft moves toward a mirror at speed v relative to the reference frame labeled S in Figure P39.85. The mirror is stationary with respect to S. A light pulse emitted by the spacecraft travels toward the mirror and is reflected back to the spacecraft. The spacecraft is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the spacecraft. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the spacecraft?arrow_forward
- Owen and Dina are at rest in frame S. which is moving at 0.600c with respect to frame S. They play a game of catch while Ed. at rest in frame S, watches the action (Fig. P39.91). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S') is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina?arrow_forwardOwen and Dina are at rest in frame S, which is moving with a speed of 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P26.45). Owen throws the ball to Dina with a speed of 0.800c (according to Owen) and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, and (d) how fast is the ball moving? Figure. P26.45arrow_forwardTwo powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forward
- An observer in frame S sees lightning simultaneously strike two points 100 m apart. The first strike occurs at x1 = y1 = z1 = t1 = 0 and the second at x2 = 100 m, y2 = z2 = t2 = 0. (a) What are the coordinates of these two events in a frame S moving in the standard configuration at 0.70c relative to S? (b) How far apart are the events in S? (c) Are the events simultaneous in S? If not, what is the difference in time between the events, and which event occurs first?arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0x109ly away is receding from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forwardOwen and Dina are at rest in frame S, which is moving at 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P9.63). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina? Figure P9.63arrow_forward
- (a) How long would the muon in Example 28.1 have lived as observed on the Earth if its velocity was 0.0500c ? (b) How far would it have traveled as observed on the Earth? (c) What distance is this in the muon's frame?arrow_forwardA starship is 1025 ly from the Earth when measured in the rest frame of the Earth. The ship travels at a speed of 0.80c on its way back to the Earth. What is the distance traveled as measured by the crew of the starship?arrow_forwardAn enemy spacecraft moves away from the Earth at a speed of v = 0.800c (Fig. P9.19). A galactic patrol spacecraft pursues at a speed of u = 0.900c relative to the Earth. Observers on the Earth measure the patrol craft to be overtaking the enemy craft at a relative speed of 0.100c. With what speed is the patrol craft overtaking the enemy craft as measured by the patrol crafts crew? Figure. P9.19arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY