Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 64P
To determine
The speed (in seven significant figures) with which you should travel to reach Crab Nebula.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I'm having trouble completing the problem I've attached a picture of below. I was able to find the the Earth's average speed in m/s relative to the sun by doing (2pi*(1.49x10^11))/31536000. But I am struggling to find the average velocity for the same thing over a period of one year in m/s. I was wondering how to calculate that? I've tried doing the (final velocity-initial velocity)/2 but the program doesn't accept my answer when using that approach.
A ship moves at a constant speed between Earth and Alpha Centauri, 4.2 light years away. According to the ship's passengers, the journey lasts 3 years. What is the speed of the ship?
The Millennium Falcon is approximately 35.2 m long. There are conflicting reports, but the Falcon made the Kessel Run in approximately 12.27 parsecs. This is an odd unit to measure speed with as a parsec is a unit of length
equal to 3.26 light-year. The science FICTION comes in when you consider that ships in Star Wars use hyperdrive to travel faster than the speed of light, so they are able to make jumps through space. Han Solo picked difficult
or dangerous points to jump between to make the trip so short. Let's imagine that the Millennium Falcon travels at 0.96c during the 12.27 parsec Kessel Run.
What distance, in light-year, does an observer at the finish line measure for the trip? Don't forget to convert parsec to light-year.
X light-year
What distance, in light-year, does Han Solo measure for the trip as he pilots the ship?
light-year
Which person measures the proper distance of the trip?
Which person would measure the proper length of the Millennium Falcon?
Chapter 33 Solutions
Essential University Physics (3rd Edition)
Ch. 33.2 - Prob. 33.1GICh. 33.4 - Triplets A and B board spaceships and head away...Ch. 33.5 - A comet plunges into the planet Jupiter. At the...Ch. 33.7 - The rest energy of a proton is 938 MeV. Without...Ch. 33 - Why was the Michelson-Morley experiment a more...Ch. 33 - Why was it necessary to repeat the...Ch. 33 - Prob. 3FTDCh. 33 - Does relativity require that the speed of sound be...Ch. 33 - Time dilation is sometimes described by saying...Ch. 33 - If youre in a spaceship moving at 0.95c relative...
Ch. 33 - The Andromeda Galaxy is 2 million light years from...Ch. 33 - Prob. 8FTDCh. 33 - Prob. 9FTDCh. 33 - The rest energy of an electron is 511 keV. Whats...Ch. 33 - An atom in an excited state emits a burst of...Ch. 33 - The quantity EB is invariant. What does this say...Ch. 33 - An airplane makes a round trip between two points...Ch. 33 - Consider a Michelson-Morley experiment with 11-m...Ch. 33 - Two stars are 50 ly apart, measured in their...Ch. 33 - How long would it take a spacecraft traveling at...Ch. 33 - A spaceship passes by you at half the speed of...Ch. 33 - An extraterrestrial spacecraft whizzes through the...Ch. 33 - How fast would you have to move relative to a...Ch. 33 - A hospitals linear accelerator produces electron...Ch. 33 - Prob. 21ECh. 33 - At what speed will the momentum of a proton (mass...Ch. 33 - Prob. 23ECh. 33 - A particle is moving at 0.90c. If its speed...Ch. 33 - Find (a) the total energy and (b) the kinetic...Ch. 33 - At what speed will the relativistic and Newtonian...Ch. 33 - Show that the time of Equation 33.2 is longer than...Ch. 33 - Youre designing a Michelson interferometer in...Ch. 33 - Earth and Sun are 8.3 light minutes apart, as...Ch. 33 - Youre the communications officer on a fast...Ch. 33 - You wish to travel to a star N light years from...Ch. 33 - The nearest star beyond our solar system is about...Ch. 33 - Twins A and B live on Earth. On their 20th...Ch. 33 - Radioactive oxygen-15 decays at such a rate that...Ch. 33 - Two distant galaxies are receding from Earth at...Ch. 33 - Two spaceships are racing. The slower one passes...Ch. 33 - Use relativistic velocity addition to show that if...Ch. 33 - Earth and Sun arc 8.33 light minutes apart. Event...Ch. 33 - Youre writing a galactic history involving two...Ch. 33 - Repeat Problem 39, now assuming that civilization...Ch. 33 - Could there be observers who would judge the two...Ch. 33 - Could there be observers who would judge the two...Ch. 33 - The Curiosity rover touched down on Mars when...Ch. 33 - Derive the Lorentz transformations for time from...Ch. 33 - In the light box of Fig. 33.6, let event A be the...Ch. 33 - Youre a consultant for the director of a sci-fi...Ch. 33 - How fast would you have to go to reach a star 240...Ch. 33 - An advanced civilization has developed a spaceship...Ch. 33 - A spaceship travels at 0.80c from Earth to a star...Ch. 33 - Use Equation 33.6 to calculate the square of the...Ch. 33 - A light beam is emitted at event A and arrives at...Ch. 33 - Compare the momentum changes needed to boost a...Ch. 33 - Event A occurs at x = 0 and t = 0 in reference...Ch. 33 - When a particle's speed doubles, its momentum...Ch. 33 - Find (a) the speed and (b) the momentum of a...Ch. 33 - Prob. 56PCh. 33 - A large city consumes electrical energy at the...Ch. 33 - In a nuclear-fusion reaction, two deuterium nuclei...Ch. 33 - Find the kinetic energy of an electron moving at...Ch. 33 - Find the speed of an electron with kinetic energy...Ch. 33 - Use the binomial approximation (Appendix A) to...Ch. 33 - Prob. 62PCh. 33 - Show from the Lorentz transformations that the...Ch. 33 - Prob. 64PCh. 33 - Prob. 65PCh. 33 - The highest-energy cosmic rays ever detected are...Ch. 33 - When an objects speed increases by 5%, its...Ch. 33 - Use the Lorentz transformations to show that if...Ch. 33 - A source emitting light with frequency f moves...Ch. 33 - Equation 33.5a transforms the velocity u of an...Ch. 33 - Consider a relativistic particle of mass m moving...Ch. 33 - Find the speed of a particle whose relativistic...Ch. 33 - Its the 24th century, and you're a curator at the...Ch. 33 - Consider a line of positive charge with line...Ch. 33 - Prob. 75PCh. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...Ch. 33 - Youve been named captain of NASAs first...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When observed from the sun at a particular instant, Earth and Mars appear to move in opposite directions with speeds 108,000 km/h and 86,871 km/h, respectively. What is the speed of Mars at this instant when observed from Earth?arrow_forwardThe Millennium Falcon is approximately 35.2 m long. There are conflicting reports, but the Fàlcon made the Kessel Run in approximately 12.95 parsecs. This is an odd unit to measure speed with as a parsec is a unit of length equal to 3.26 light-year. The science FICTION comes in when you consider that ships in Star Wars use hyperdrive to travel faster than the speed of light, so they are able to make jumps through space. Han Solo picked difficult or dangerous points to jump between to make the trip so short.tet's imagine that the Millennium Falcon travels at 0.95c during the 12.95 parsec Kessel Run. What distance, in light-year, does an observer at the finish line measure for the trip? Don't forget to convert parsec to light-year. light-year What distance, in light-year, does Han Solo measure for the trip as he pilots the ship? | light-yeararrow_forwardAssume another planet is 10^8 million miles away from Earth. If an astronaut in the future can travel 10^5 million miles per week, about how many weeks would it take for her to reach the other planet?arrow_forward
- A planet with mass 4.83x1023 kg orbits a star with mass 6.95x1030 kg. The orbit is circular, and the distance from the planet to the sun is 244x106 km. What is the length of a year on this planet? Give your answer in earth years (1 earth year = 31,557,600 seconds).arrow_forwardThere is a galactic, royal wedding in El Candrea. Maria Isabela, the princess of andalusia prima maxima, is riding a diamond-studded, pink spacetime motorcycle whose maximum speed is 5x10^2 km/s. The religious princess started her speed at about 5x10^1 km/s and she is to supposed to travel 1.78 x 10^4 km at a straight distance in about 60 seconds to reach the wedding before the galactic church closes. The princess accelerated until her max speed was reached. She then maintains the aforementioned speed till she reached the wedding gates. To reach the church before it closes, what should be her minimum constant acceleration? a. 8.30 km/s^2, b. 7.50 km/s^2, c. 5.29 km/s^2, or d. 6.95 km/s^2arrow_forwardIf astronauts could travel at v = 0.902c, we on Earth would say it takes (4.20/0.902) = 4.66 years to reach Alpha Centauri, 4.20 light-years away. The astronauts disagree. (a) How much time passes on the astronauts' clocks? In years (b) What is the distance to Alpha Centauri as measured by the astronauts? In light yearsarrow_forward
- The starships of the Solar Federation are marked with the symbol of the federation, a circle, while starships of the Denebian Empire are marked with the empire’s symbol, an ellipse whose major axis is 1.40 times longer than its minor axis (a = 1.40b in Fig). How fast, relative to an observer, does an empire ship have to travel for its marking to be confused with the marking of a federation ship?arrow_forwardIf astronauts could travel at v = 0.932c, we on Earth would say it takes (4.20/0.932) = 4.51 years to reach Alpha Centauri, 4.20 light-years away. The astronauts disagree. (a) How much time passes on the astronauts' clocks? years (b) What is the distance to Alpha Centauri as measured by the astronauts? light-yearsarrow_forwardThe distance of a galaxy is of the order of 1025 m. Calculate the order of magnitude of time taken by light to reach us from the galaxy.arrow_forward
- On day 5 of our trip we drove from Pompei to Vicenza in the north of Italy (440 miles, about 6 hours 28 minutes) – a long day of riding in the car. I was driving about 140 km/hour on the Autostrada (express toll road) in Italy. How fast was I driving in miles per hourarrow_forwardYou decide to travel to a star 62 light-years from Earthat a speed that tells you the distance is only 25 lightyears. How many years would it take you to make the trip?arrow_forwardA spacecraft is moving relative to the earth.An observer on the earth finds that, according to her clock, 3601 s elapse between 1pm and 2pm on the spacecraft’s clock.What is the spacecraft’s speed relative to the earth?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning