
Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 33, Problem 17QLP
Explain the significance of the fact that the hardness of metal oxides is generally much higher than that of the base metals themselves. Give some examples.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Solve this probem and show all of the work
The differential equation of a cruise control system is provided by the following equation:
WRITE OUT SOLUTION DO NOT USE A COPIED SOLUTION
Find the closed loop transfer function with respect to the reference velocity (vr) .
a. Find the poles of the closed loop transfer function for different values of K. How does the poles move as you change K?
b. Find the step response for different values of K and plot in MATLAB. What can you observe?
Solve this problem and show all of the work
Chapter 33 Solutions
Manufacturing Engineering & Technology
Ch. 33 - What is tribology?Ch. 33 - Explain what is meant by (a) surface texture and...Ch. 33 - List and explain the types of defects typically...Ch. 33 - Define the terms (a) roughness, and (b) waviness.Ch. 33 - Explain why the results from a profilometer are...Ch. 33 - Prob. 6RQCh. 33 - List the types of wear generally observed in...Ch. 33 - Define the terms wear, friction, and lubricant.Ch. 33 - How can adhesive wear be reduced? Abrasive wear?Ch. 33 - Prob. 10RQ
Ch. 33 - Explain the functions of a lubricant in...Ch. 33 - Prob. 12RQCh. 33 - Prob. 13RQCh. 33 - Describe the factors involved in lubricant...Ch. 33 - Prob. 15RQCh. 33 - Prob. 16QLPCh. 33 - Explain the significance of the fact that the...Ch. 33 - Prob. 18QLPCh. 33 - Explain why identical surface-roughness values do...Ch. 33 - Prob. 20QLPCh. 33 - Prob. 21QLPCh. 33 - Prob. 22QLPCh. 33 - Prob. 23QLPCh. 33 - Comment on the surface roughness of various parts...Ch. 33 - Prob. 25QLPCh. 33 - Do the same as for Problem 33.25, but for surface...Ch. 33 - Describe your observations regarding Fig. 33.7.Ch. 33 - Give the reasons that an originally round specimen...Ch. 33 - Prob. 29QLPCh. 33 - Explain the reason that the abrasive-wear...Ch. 33 - Prob. 31QLPCh. 33 - List the similarities and differences between...Ch. 33 - Explain why the types of wear shown in Fig. 33.11...Ch. 33 - List the requirements of a lubricant.Ch. 33 - List manufacturing operations in which high...Ch. 33 - List manufacturing operations in which high wear...Ch. 33 - Prob. 37QLPCh. 33 - Prob. 38QTPCh. 33 - A surface with a triangular sawtooth roughness...Ch. 33 - List the steps you would follow if you wished to...Ch. 33 - Discuss the tribological differences between...Ch. 33 - Section 33.2 listed major surface defects. How...Ch. 33 - Describe your own thoughts regarding biological...Ch. 33 - Prob. 48SDPCh. 33 - Prob. 49SDPCh. 33 - Prob. 50SDPCh. 33 - Describe your thoughts on the desirability of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Determine the minimum applied force P required to move wedge A to the right. The spring is compressed a distance of 175 mm. Neglect the weight of A and B. The coefficient of static friction for all contacting surface is μs = 0.35. Neglect friction at the rollers. k = = 15 kN/m P A B 10°arrow_forwardDO NOT COPY SOLUTION- will report The differential equation of a cruise control system is provided by the following equation: Find the closed loop transfer function with respect to the reference velocity (vr) . a. Find the poles of the closed loop transfer function for different values of K. How does the poles move as you change K? b. Find the step response for different values of K and plot in MATLAB. What can you observe?arrow_forwarda box shaped barge 37m long, 6.4 m beam, floats at an even keel draught of 2.5 m in water density 1.025 kg/m3. If a mass is added and the vessel moves into water density 1000 kg/m3, determine the magnitude of this mass if the fore end and aft end draughts are 2.4m and 3.8m respectively.arrow_forward
- a ship 125m long and 17.5m beam floats in seawater of 1.025 t/m3 at a draught of 8m. the waterplane coefficient is 0.83, block coefficient 0.759 and midship section area coefficient 0.98. calculate i) prismatic coefficient ii) TPC iii) change in mean draught if the vessel moves into water of 1.016 t/m3arrow_forwardc. For the given transfer function, find tp, ts, tr, Mp . Plot the resulting step response. G(s) = 40/(s^2 + 4s + 40) handplot only, and solve for eacharrow_forwardA ship of 9000 tonne displacement floats in fresh water of 1.000 t/m3 at a draught 50 mm below the sea water line. The waterplane area is 1650 m2. Calculate the mass of cargo which must be added so that when entering seawater of 1.025 t/m3 it floats at the seawater line.arrow_forward
- A ship of 15000 tonne displacement floats at a draught of 7 metres in water of 1.000t/cub. Metre.It is required to load the maximum amount of oil to give the ship a draught of 7.0 metre in seawater ofdensity 1.025 t/cub.metre. If the waterplane area is 2150 square metre, calculate the massof oil requiredarrow_forwardA ship of 8000 tonne displacement floats in seawater of 1.025 t/m3 and has a TPC of 14. The vessel moves into fresh water of 1.000 t/m3 and loads 300 tonne of oil fuel. Calculate the change in mean draught.arrow_forwardAuto Controls DONT COPY ANSWERS - will report Perform the partial fraction expansion of the following transfer function and find the impulse response: G(s) = (s/2 + 5/3) / (s^2 + 4s + 6) G(s) =( 6s^2 + 50) / (s+3)(s^2 +4)arrow_forward
- I submitted the below question and received the answer i copied into this question as well. Im unsure if it is correct, so looking for a checkover. i am stuck on the part tan-1 (0.05) = 0.04996 radians. Just unsure where the value for the radians came from. Just need to know how they got that answer and how it is correct before moving on to the next part. If any of the below information is wrong, please feel free to give me a new answer or an entire new explanation. An Inclining experiment done on a ship thats 6500 t, a mass of 30t was moved 6.0 m transvesly causing a 30 cm deflection in a 6m pendulum, calculate the transverse meta centre height. Here is the step-by-step explanation: Given: Displacement of the ship (W) = 6500 tonnes = 6500×1000=6,500,000kg Mass moved transversely (w) = 30 tonnes=30×1000=30,000kg The transverse shift of mass (d) = 6.0 meters Pendulum length (L) = 6.0 meters Pendulum deflection (x) = 30 cm = 0.30 meters Step 1: Formula for Metacentric Height…arrow_forwardAnswer the assignment question, expert onlyarrow_forwardA 1 inch rod diameter B 3/4 inch rod diameter C 1/2 inch rod diameter D 3/8 inch rod diameterarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY