Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 29QLP
To determine
Explain the possibility of the ring compression test to be applied to rolling
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A solid, cylindrical workpiece made of 5052-O aluminum that is 87 mm high and 65.878 mm radius and is to be reduced in height by 30% using forging. The coefficient of friction is 0.168. 5052-O yield stress is 98.21 MPa, strain hardening exponent is 0.128 , and strength coefficient is 193.74 MPa.
Determine the forging force (MN) at the end of the stroke when the height has been reduced by 30%.
Estimate the power for annealed low carbon steel strip 200 mm wide and 10 mm thick, rolled to a thickness of 6 mm. The roll radius is 200 mm, and the roll rotates at 200 rev/min; use coefficient of friction at the die-work interface (p)=0.1. A low carbon steel such as AISI 1020 has K (strength coefficient) = 530 MPa and n ( strain hardening exponent) =0.26a)1059 kWb)950 kWc)1183 kWd)875 kW
Answer it fast please
Chapter 33 Solutions
Manufacturing Engineering & Technology
Ch. 33 - What is tribology?Ch. 33 - Explain what is meant by (a) surface texture and...Ch. 33 - List and explain the types of defects typically...Ch. 33 - Define the terms (a) roughness, and (b) waviness.Ch. 33 - Explain why the results from a profilometer are...Ch. 33 - Prob. 6RQCh. 33 - List the types of wear generally observed in...Ch. 33 - Define the terms wear, friction, and lubricant.Ch. 33 - How can adhesive wear be reduced? Abrasive wear?Ch. 33 - Prob. 10RQ
Ch. 33 - Explain the functions of a lubricant in...Ch. 33 - Prob. 12RQCh. 33 - Prob. 13RQCh. 33 - Describe the factors involved in lubricant...Ch. 33 - Prob. 15RQCh. 33 - Prob. 16QLPCh. 33 - Explain the significance of the fact that the...Ch. 33 - Prob. 18QLPCh. 33 - Explain why identical surface-roughness values do...Ch. 33 - Prob. 20QLPCh. 33 - Prob. 21QLPCh. 33 - Prob. 22QLPCh. 33 - Prob. 23QLPCh. 33 - Comment on the surface roughness of various parts...Ch. 33 - Prob. 25QLPCh. 33 - Do the same as for Problem 33.25, but for surface...Ch. 33 - Describe your observations regarding Fig. 33.7.Ch. 33 - Give the reasons that an originally round specimen...Ch. 33 - Prob. 29QLPCh. 33 - Explain the reason that the abrasive-wear...Ch. 33 - Prob. 31QLPCh. 33 - List the similarities and differences between...Ch. 33 - Explain why the types of wear shown in Fig. 33.11...Ch. 33 - List the requirements of a lubricant.Ch. 33 - List manufacturing operations in which high...Ch. 33 - List manufacturing operations in which high wear...Ch. 33 - Prob. 37QLPCh. 33 - Prob. 38QTPCh. 33 - A surface with a triangular sawtooth roughness...Ch. 33 - List the steps you would follow if you wished to...Ch. 33 - Discuss the tribological differences between...Ch. 33 - Section 33.2 listed major surface defects. How...Ch. 33 - Describe your own thoughts regarding biological...Ch. 33 - Prob. 48SDPCh. 33 - Prob. 49SDPCh. 33 - Prob. 50SDPCh. 33 - Describe your thoughts on the desirability of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Derive the expression for roll separating force and power in rolling.arrow_forwardQuestion 3 A rolling operation on a 250 mm wide, 8 mm thick, 1112 cold rolled steel takes place using hardened steel rolls with a surface finish of 0.03 um. The rolls have a diameter of 350 mm and rotates at 115 rpm. The final thickness of the plate is 6 mm and the entry speed of the plate is 1.8 m/s. Calculate: 3.1 The minimum coefficient of friction required, that will make the rolling operation possible. 3.2 The required roll force. 3.3 The position of the neutral point, xn 3.4 Indicate, using a sketch, the neutral point showing all relevant notation and dimensions.arrow_forward(c) A flat rolling operation is being carried out where the roll radius is 200 mm and the roll rotates at 100 rpm. The workpiece material is annealed low carbon steel with 200 mm wide and 10 mm thickness. The strength coefficient and the strain hardening of the carbon steel are 530 MPa and 0.26, respectively. The coefficient of friction is 0.2. (i) Caicurae tne roll force and torque if the workpiece is rolled to a thickness of 4 mm. (ii) Calculate the maximum possible draft and evaluate how friction effect the thickness of the rolled workpiece.arrow_forward
- Don't try if you don't know and don't provide handwritten solutionarrow_forwardWould you kindly answer this question A rolling operation on a 250 mm wide, 8 mm thick, 1112 cold rolled steel takes place using hardened steel rolls with a surface finish of 0.03 μm. The rolls have a diameter of 350 mm and rotates at 115 rpm. The final thickness of the plate is 6 mm and the entry speed of the plate is 1.8 m/s. Calculate: 3.1 The minimum coefficient of friction required, that will make the rolling operation possible. 3.2 The required roll force. 3.3 The position of the neutral point, ?? 3.4 Indicate, using a sketch, the neutral point showing all relevant notation and dimensions.arrow_forwardIf coefficient of friction µ in a rolling process is 0.5 and radius of roller is 1,000 mm, what is the maximum reduction or draft possible?arrow_forward
- Describe the method of improving the forging die life and the advantages of improving the forging die life.arrow_forwardExplain the difference between Flat Rolling and Shape Rolling processes.arrow_forwardEstimate the power for annealed low carbon steel strip 200 mm wide and 10 mm thlck, rolled to a thickness of 6 mm The roll radius is 200 mm), and the roll rotates at 200 rev/min; use coefficient 0f friction at the die-work interface (p)= 0.1, Alow carbon steel such as AlSI 1020 has K (strength coefficient) = 530 MPaand n (stram hardening exponent) = 0.26arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License