Revenue The manufacturing process requires that oil refineries must manufacture at least 2 gal of gasoline for every gallon of fuel oil. To meet the winter demand for fuel oil, at least 3 million gal a day must be produced. The demand for gasoline is no more than 6.4 million gal per day. It takes 15 minutes to ship each million gal of gasoline and 1 hour lo ship each million gal of fuel oil out of the warehouse. No more than 4 hours and 39 minutes are available for shipping.
(a) If the refinery sells gasoline for $2.50 per gal and fuel oil for $2 per gal how much of each should be produced to maximize revenue?
(b) Find the maximum revenue.
(c) Suppose the price for fuel oil begins to increase. Beyond what amount would this price have to increase before a different amount of gasoline and fuel oil should be produced to maximize revenue?
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Finite Mathematics (11th Edition)
Additional Math Textbook Solutions
Elementary Statistics: A Step By Step Approach
Calculus: Early Transcendentals (2nd Edition)
Intro Stats, Books a la Carte Edition (5th Edition)
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
Elementary Statistics: Picturing the World (7th Edition)
- Could you please solve this question on a note book. please dont use AI because this is the third time i upload it and they send an AI answer. If you cant solve handwritten dont use the question send it back. Thank you.arrow_forward(a) Write down the general solutions for the wave equation Utt - Uxx = 0. (b) Solve the following Goursat problem Utt-Uxx = 0, x = R Ux-t=0 = 4x2 Ux+t=0 = 0 (c) Describe the domain of influence and domain of dependence for wave equations. (d) Solve the following inhomogeneous wave equation with initial data. Utt - Uxx = 2, x ЄR U(x, 0) = 0 Ut(x, 0) = COS Xarrow_forwardQuestion 3 (a) Find the principal part of the PDE AU + Ux +U₁ + x + y = 0 and determine whether it's hyperbolic, elliptic or parabolic. (b) Prove that if U (r, 0) solves the Laplace equation in R2, then so is V (r, 0) = U (², −0). (c) Find the harmonic function on the annular region 2 = {1 < r < 2} satisfying the boundary conditions given by U(1, 0) = 1, U(2, 0) = 1 + 15 sin(20).arrow_forward
- 1c pleasearrow_forwardQuestion 4 (a) Find all possible values of a, b such that [sin(ax)]ebt solves the heat equation U₁ = Uxx, x > 0. (b) Consider the solution U(x,t) = (sin x)e¯t of the heat equation U₁ = Uxx. Find the location of its maxima and minima in the rectangle Π {0≤ x ≤ 1, 0 ≤t≤T} 00} (explain your reasonings for every steps). U₁ = Uxxx>0 Ux(0,t) = 0 U(x, 0) = −1arrow_forwardCould you please solve this question on a note book. please dont use AI because this is the third time i upload it and they send an AI answer. If you cant solve handwritten dont use the question send it back. Thank you.arrow_forward
- Could you please solve this question on a note book. please dont use AI because this is the third time i upload it and they send an AI answer. If you cant solve handwritten dont use the question send it back. Thank you.arrow_forward(b) Consider the equation Ux - 2Ut = -3. (i) Find the characteristics of this equation. (ii) Find the general solutions of this equation. (iii) Solve the following initial value problem for this equation Ux - 2U₁ = −3 U(x, 0) = 0.arrow_forwardQuestion 4 (a) Find all possible values of a, b such that [sin(ax)]ebt solves the heat equation U₁ = Uxx, x > 0. (b) Consider the solution U(x,t) = (sin x)et of the heat equation U₁ = Uxx. Find the location of its maxima and minima in the rectangle πT {0≤ x ≤½,0≤ t≤T} 2' (c) Solve the following heat equation with boundary and initial condition on the half line {x>0} (explain your reasonings for every steps). Ut = Uxx, x > 0 Ux(0,t) = 0 U(x, 0) = = =1 [4] [6] [10]arrow_forward
- Part 1 and 2arrow_forwardAdvanced Functional Analysis Mastery Quiz Instructions: . No partial credit will be awarded; any mistake will result in a score of 0. Submit your solution before the deadline. Ensure your solution is detailed, and all steps are well-documented No Al tools (such as Chat GPT or others) may be used to assist in solving the problems. All work must be your own. Solutions will be checked for Al usage and plagiarism. Any detected violation will result in a score of 0. Problem Let X and Y be Banach spaces, and T: XY be a bounded linear operator. Consider the following tasks 1. [Operator Norm and Boundedness] a. Prove that for any bounded linear operator T: XY the norm of satisfies: Tsup ||T(2)||. 2-1 b. Show that if T' is a bounded linear operator on a Banach space and T <1, then the operatur 1-T is inverüble, and (IT) || ST7 2. [Weak and Strong Convergence] a Define weak and strong convergence in a Banach space .X. Provide examples of sequences that converge weakly but not strongly, and vice…arrow_forwardPart 1 and 2arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning