Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 72AP
To determine
The inductance for the toroid.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The current I flowing rightward through inductor L is at a steady rate of 0.1280 A/s. The magnitude I εL I of the difference between the right end and the left end of the inductor is 0.0160 (V).
What is the inductance L?
Which end of the inductor above is at higher voltage, the left end or the right end? Explain.
In the figure ɛ = 10.0 V, R, = 4.00 N , and R2 = 1.00 N. The
inductor is ideal. If the switch is closed for a long time, what is the
current through the inductor. Give your answer in A.
Şekildeki devrede ɛ = 10.0 V, R1 = 4.00 N , ve R2 = 1.00 N olarak
verilmişlerdir. Solenoidin iç direnci yoktur. Anahtar kapatıldıktan çok
uzun süre sonra solenoidden geçen akım A cinsinden nedir.
R
E-
R2
L
anıtınız
le
A toroidal solenoid with a rectangular cross-section is wound uniformly with 480 turns. The inner radius is a=5 cm, the outer radius is b=7.5 cm, and it has a thickness of t=1 cm. What is the self-inductance of this device?
Chapter 32 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 32.1 - A coil with zero resistance has its ends labeled a...Ch. 32.2 - Prob. 32.2QQCh. 32.3 - Prob. 32.3QQCh. 32.4 - Prob. 32.4QQCh. 32.5 - (i) At an instant of time during the oscillations...Ch. 32 - Prob. 1OQCh. 32 - Prob. 2OQCh. 32 - Prob. 3OQCh. 32 - Prob. 4OQCh. 32 - Prob. 5OQ
Ch. 32 - Prob. 6OQCh. 32 - Prob. 7OQCh. 32 - Prob. 1CQCh. 32 - Prob. 2CQCh. 32 - Prob. 3CQCh. 32 - Prob. 4CQCh. 32 - Prob. 5CQCh. 32 - Prob. 6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - Prob. 8CQCh. 32 - Prob. 9CQCh. 32 - Prob. 10CQCh. 32 - Prob. 1PCh. 32 - Prob. 2PCh. 32 - Prob. 3PCh. 32 - Prob. 4PCh. 32 - Prob. 5PCh. 32 - Prob. 6PCh. 32 - Prob. 7PCh. 32 - Prob. 8PCh. 32 - Prob. 9PCh. 32 - Prob. 10PCh. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - Prob. 24PCh. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - Prob. 28PCh. 32 - Prob. 29PCh. 32 - Prob. 30PCh. 32 - Prob. 31PCh. 32 - Prob. 32PCh. 32 - Prob. 33PCh. 32 - Prob. 34PCh. 32 - Prob. 35PCh. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Prob. 38PCh. 32 - Prob. 39PCh. 32 - Prob. 40PCh. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Prob. 44PCh. 32 - Prob. 45PCh. 32 - Prob. 46PCh. 32 - Prob. 47PCh. 32 - Prob. 48PCh. 32 - Prob. 49PCh. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 52PCh. 32 - Prob. 53PCh. 32 - Prob. 54PCh. 32 - Prob. 55PCh. 32 - Prob. 56PCh. 32 - Prob. 57PCh. 32 - Prob. 58PCh. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Prob. 60APCh. 32 - Prob. 61APCh. 32 - Prob. 62APCh. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 64APCh. 32 - Prob. 65APCh. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 67APCh. 32 - Prob. 68APCh. 32 - Prob. 69APCh. 32 - Prob. 70APCh. 32 - Prob. 71APCh. 32 - Prob. 72APCh. 32 - Prob. 73APCh. 32 - Prob. 74APCh. 32 - Prob. 75APCh. 32 - Prob. 76APCh. 32 - Prob. 77APCh. 32 - Prob. 78CPCh. 32 - Prob. 79CPCh. 32 - Prob. 80CPCh. 32 - Prob. 81CPCh. 32 - Prob. 82CPCh. 32 - Prob. 83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A coil with a self-inductance of 3.0 H and a resistance of 100 2 carries a steady current of 2.0 A. (a) What is the energy stored in the magnetic field of the coil? (b) What is the energy per second dissipated in the resistance of the coil?arrow_forwardA coil of 40 turns is wrapped around a long solenoid of cross-sectional area 7.5 × 10-3 m2. The solenoid is 0.50 m long and has 500 turns. (a) What is the mutual inductance of this system? (b) The outer coil is replaced by a coil of 40 turns whose radius is three times that of the solenoid. What is the mutual inductance of this configuration?arrow_forwardTwo coaxial cables of length with radii a and b are carrying currents in opposite directions as shown in Figure P33.78. Determine the inductance of the system. Hint: Use Ampres law to write an expression for the magnetic field in the region between the cables, a distance r from the axis of the cables. Then calculate the magnetic flux through a narrow rectangular region between the cables such that the Field is perpendicular to the area everywhere. FIGURE P33.78arrow_forward
- Consider the circuit in Figure P32.18, taking = 6.00 V, L = 8.00 mH, and R = 4.00 . (a) What is the inductive time constant of the circuit? (b) Calculate the current in the circuit 250 s after the switch is closed. (c) What is the value of the final steady-state current? (d) After what time interval does the current reach 80.0% of its maximum value?arrow_forwardCan you solve problem #25 in the picture below?arrow_forwardProblem 275. Two metal spheres of radius R are placed at a very large distance from each other, and they are connected by a coil of inductance L, as it is shown in the figure. One of the spheres is loaded with electric charge. At what time, after closing the switch S, does the charge on this sphere decrease to the half? At what time will the charge reach the original value again? L Sarrow_forward
- Help to solve the part (B) only.arrow_forwardAn infinitely long and thin wire carrying 10 A current is places on the Z-axis away from a triangular loop. The triangle is in the YZ-plane with its vertices at (0, 1, 0), (0, 2, 0) and (0, 1, 2). 1 m a) Find the mutual inductance between the wire and the triangular loop yarrow_forwarda 12.0 V ideal battery, a 20.0 resistor, and an inductor are connected by a switch at time t = 0. At what rate is the battery transferring energy to the inductor’s field at t = 1.61tL?arrow_forward
- An air-filled cylindrical inductor has 2600 turns, and it is 2.4 cm in diameter and 34.5 cm long. What is its inductance? How many turns would you need to generate the same inductance if the core were iron-filled instead? Assume the magnetic permeability of iron is about 1200 times that of free space.arrow_forwardIn the figure ɛ = inductor is ideal. If the switch is closed for a long time, what is the current through the inductor. Give your answer in A. 10.0 V, R1 = 4.00 N, and R2 = 1.00 N. The OA elarak deten çok- veriiy Aincinden nedir. anra R1 S E- R2 Larrow_forwardAn 8 cm long solenoid has 71 windings and a circular cross section of radius a=1.4 cm. The solenoid goes through the center of a circular coil of wire with 40 windings and radius b=6 cm. The current in the circular coil changes according to i(t)=4t2+4.5t. What is the mutual inductance of the coil and solenoid? What is the magnitude of the emf induced in the solenoid at t=4 s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning