Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 32, Problem 20P
To determine
The inductance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One application of an RL circuit is the generation of time-varying high voltage from a low-voltage source. As shown in the figure below, R1
15.0V. What is the current in the inductor a long time after the switch has been in position A? 1.25 A
B
E
L
R₁
w
R₁₂
=
103002, R2
=
12.0, L = 1.82H and ε =
A 70 μF capacitor with a 13 μC charge is connected across a 18 mH inductor. What is the charge on the capacitor and what is the current through the inductor 0.55 ms after the circuit is connected?
A loop of wire has a self-inductance of 5.5 mH. You pass a current of 9.0 Amps though the loop, and then drop the current to 0 at a contastant rate over 3.5 seconds. What is the EMF generated?
Chapter 32 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 32.1 - A coil with zero resistance has its ends labeled a...Ch. 32.2 - Prob. 32.2QQCh. 32.3 - Prob. 32.3QQCh. 32.4 - Prob. 32.4QQCh. 32.5 - (i) At an instant of time during the oscillations...Ch. 32 - Prob. 1OQCh. 32 - Prob. 2OQCh. 32 - Prob. 3OQCh. 32 - Prob. 4OQCh. 32 - Prob. 5OQ
Ch. 32 - Prob. 6OQCh. 32 - Prob. 7OQCh. 32 - Prob. 1CQCh. 32 - Prob. 2CQCh. 32 - Prob. 3CQCh. 32 - Prob. 4CQCh. 32 - Prob. 5CQCh. 32 - Prob. 6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - Prob. 8CQCh. 32 - Prob. 9CQCh. 32 - Prob. 10CQCh. 32 - Prob. 1PCh. 32 - Prob. 2PCh. 32 - Prob. 3PCh. 32 - Prob. 4PCh. 32 - Prob. 5PCh. 32 - Prob. 6PCh. 32 - Prob. 7PCh. 32 - Prob. 8PCh. 32 - Prob. 9PCh. 32 - Prob. 10PCh. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - Prob. 24PCh. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - Prob. 28PCh. 32 - Prob. 29PCh. 32 - Prob. 30PCh. 32 - Prob. 31PCh. 32 - Prob. 32PCh. 32 - Prob. 33PCh. 32 - Prob. 34PCh. 32 - Prob. 35PCh. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Prob. 38PCh. 32 - Prob. 39PCh. 32 - Prob. 40PCh. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Prob. 44PCh. 32 - Prob. 45PCh. 32 - Prob. 46PCh. 32 - Prob. 47PCh. 32 - Prob. 48PCh. 32 - Prob. 49PCh. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 52PCh. 32 - Prob. 53PCh. 32 - Prob. 54PCh. 32 - Prob. 55PCh. 32 - Prob. 56PCh. 32 - Prob. 57PCh. 32 - Prob. 58PCh. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Prob. 60APCh. 32 - Prob. 61APCh. 32 - Prob. 62APCh. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 64APCh. 32 - Prob. 65APCh. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 67APCh. 32 - Prob. 68APCh. 32 - Prob. 69APCh. 32 - Prob. 70APCh. 32 - Prob. 71APCh. 32 - Prob. 72APCh. 32 - Prob. 73APCh. 32 - Prob. 74APCh. 32 - Prob. 75APCh. 32 - Prob. 76APCh. 32 - Prob. 77APCh. 32 - Prob. 78CPCh. 32 - Prob. 79CPCh. 32 - Prob. 80CPCh. 32 - Prob. 81CPCh. 32 - Prob. 82CPCh. 32 - Prob. 83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the transformer shown in Figure P33.51, the load resistance RL is 50.0 . The turns ratio N1/N2 is 2.50, anti the rms source voltage is Vs = 80.0 V. If a voltmeter across the load resistance measures an rms voltage of 25.0 V, what is the source resistance Rs?arrow_forwardConsider the circuit in Figure P32.18, taking = 6.00 V, L = 8.00 mH, and R = 4.00 . (a) What is the inductive time constant of the circuit? (b) Calculate the current in the circuit 250 s after the switch is closed. (c) What is the value of the final steady-state current? (d) After what time interval does the current reach 80.0% of its maximum value?arrow_forwardIn the circuit of as shown, the battery emf is 50.0 V, the resistance is 250 Ω, and the capacitance is 0.500 μF. The switch S is closed for a long time interval, and zero potential difference is measured across the capacitor. After the switch is opened, the potential difference across the capacitor reaches a maximum value of 150 V. What is the value of the inductance?arrow_forward
- In the circuit of Figure P32.48, the battery emf & is 50 V, the resistance R is 190 2, and the capacitance C is 0.500 μF. The switch S is closed for a long time, and no voltage is measured across the capacitor. After the switch is opened, the potential difference across the capacitor reaches a maximum value of 150 V. What is the value of the inductance L? 0.173 Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. H R ε 000 Figure P32.48 Additional Materialsarrow_forwardA circuit is constructed with four resistors, one inductor, one battery and a switch as shown. The values for the resistors are: R1 = R. %3D + R2 = 39 0, R3 = 62 Q and R4 = 126 Q. The inductance is L = 362 mH and the battery voltage is V = 12 V. The positive terminal of the battery is indicated with a + sign. Ra L %3D R4 R2 1) The switch has been open for a long time when at time t = 0, the switch is closed. What is l4(0), the magnitude of the current through the resistor R4 just after the switch is closed? 0.053 A Submit 2) What is l4(00), the magnitude of the current through the resistor R4 after the switch has been closed for a very long time? 0.063 A Submit 3) What is IL(00), the magnitude of the current through the inductor after the switch has been closed for a very long time? 0.0389 A Submit 4) After the switch has been closed for a very long time, it is then opened. What is I3(topen), the current through the resistor R3 at a time topen = 6.8 %3D ms after the switch was opened?…arrow_forward7arrow_forward
- The switch in a series RL circuit with a re- sistance of 6.1n, inductance of 3.1 H, and voltage of 35.3 V is closed at t = 0.4 s. What is the maximum current in the cir- cuit? Answer in units of A. What is the current when t = 1.2 s? Answer in units of A.arrow_forwardIn the circuit of the figure below, the battery emf & is 55 V, the resistance R is 210 0, and the capacitance C is 0.500 µF. The switch S is closed for a long time interval, and zero potential difference is measured across the capacitor. After the switch is dpened, the potential difference across the capacitor reaches a maximum value of 150 V. What is the value of the inductance? R 3. S llarrow_forwardAt t=infinity, what is the current flowing through an inductor? What is the voltage across the inductor at t=0? At t=infinity, what is the voltage across the inductor?arrow_forward
- An LR circuit is hooked up to a battery which the switch initially open. The resistance in the circuit is R = 110 Ohm, the inductance is L=4.80H, and battery maintains a voltage of E=47.0V. At time t=0 the switch is closed. What is the current through the circuit after the switch has been closed for t=2.66 times 10-2s? What is the voltage across the inductor after the switch has been closed for t=2.66 times 10-2 seconds?arrow_forwardAn RLC circuit consists of a 1.34 2 resistor, a 8.44 nF capacitor, and a 5.55 mH inductor. Initially, the voltage across the capacitor is 1.46 V, and no current is flowing in the circuit. How many oscillations occur as the charge amplitude on the capacitor decays to 67.4% of its initial value? It is acceptable to let w' = w. i oscillations (include decimals if needed to keep the appropriate number of significant digits in your answer)arrow_forwardAn RL circuit has an emf source of 28 v, a 62 resistor, a 38 H inductor, and a switch. At what rate, as a function of t, does the emf across the inductor change after the switch is closed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY