College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 32, Problem 56PE
(a) How many 239Pu nuclei must fission to produce a 20.0−kT yield, assuming 200 MeV per fission? (b) What is the mass of this much 239Pu?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 32 Solutions
College Physics
Ch. 32 - In terms of radiation dose, what is the major...Ch. 32 - One of the methods used to limit radiation dose to...Ch. 32 - Isotopes that emit (radiation are relatively safe...Ch. 32 - Why is radon more closely associated with inducing...Ch. 32 - The RBE for lowenergy s is 1.7, whereas that for...Ch. 32 - Which methods of radiation protection were used in...Ch. 32 - What radioisotope could be a problem in homes...Ch. 32 - Are some types of cancer more sensitive to...Ch. 32 - Suppose a person swallows some radioactive...Ch. 32 - Radiotherapy is more likely to be used to treat...
Ch. 32 - Does loud irradiation leave the food radioactive?...Ch. 32 - Compare a low dose of radiation to a human with a...Ch. 32 - Suppose one load irradiation plant uses a 137Cs...Ch. 32 - Why does the fusion of light nuclei into heavier...Ch. 32 - Energy input is required to fuse medium-mass...Ch. 32 - In considering potential fusion reactions, what is...Ch. 32 - Give reasons justifying the contention made in the...Ch. 32 - Explain why the fission of heavy nuclei releases...Ch. 32 - Explain, in terms of conservation of momentum and...Ch. 32 - The ruins of the Chernobyl reactor are enclosed in...Ch. 32 - Since the uranium or plutonium nucleus fissions...Ch. 32 - The cure of a nuclear reactor generates a large...Ch. 32 - How can a nuclear reactor contain many critical...Ch. 32 - Why can heavy nuclei with odd numbers of neutrons...Ch. 32 - Why is a conventional fission nuclear reactor not...Ch. 32 - What are some of the reasons that plutonium rather...Ch. 32 - Use the laws of conservation of momentum and...Ch. 32 - How does the lithium deuteride in the...Ch. 32 - Fallout from nuclear weapons tests in the...Ch. 32 - A neutron generator uses an (source, such as...Ch. 32 - Neutrons from a source (perhaps the one discussed...Ch. 32 - The purpose of producing 99Mo (usually by neutron...Ch. 32 - (a) Two annihilation rays in a PET scan originate...Ch. 32 - Table 32.1 indicates that 7.50 mCi of 99mTc is...Ch. 32 - The activities of 131I and 123I used in thyroid...Ch. 32 - (a) Neutron activation of sodium, which is 100%...Ch. 32 - What is the dose in mSv for: (a) a 0.1 Gy xray?...Ch. 32 - Find the radiation dose in Gy for: (a) A 10mSv...Ch. 32 - How many Gy of exposure is needed to give a...Ch. 32 - What is the dose in Sv in a cancer treatment that...Ch. 32 - One half the rays from 99mTc are absorbed by a...Ch. 32 - A plumber at a nuclear power plant receives a...Ch. 32 - In the 1980s, the term picowave was used to...Ch. 32 - Find the mass of 239Pu mat has an activity of 1.00...Ch. 32 - A beam of 168MeV nitrogen nuclei is used for...Ch. 32 - (a) If the average molecular mass of compounds in...Ch. 32 - Calculate the dose in Sv to the chest at a patient...Ch. 32 - (a) A cancer patient is exposed to rays from a...Ch. 32 - What is the mass of 60Co in a cancer therapy...Ch. 32 - Large amounts of 65Zn are produced in copper...Ch. 32 - Naturally occurring 40K is listed as responsible...Ch. 32 - (a) Background radiation due to 226Ra averages...Ch. 32 - The annual radiation dose from 14C in our bodies...Ch. 32 - If everyone in Australia received an extra 0.05...Ch. 32 - Verify that the total number at nucleons, total...Ch. 32 - Calculate the energy output in each of the fusion...Ch. 32 - Show that the total energy released in the...Ch. 32 - Verify by listing the number of nucleons, total...Ch. 32 - The energy produced by the fusion of a 1.00—kg...Ch. 32 - Tritium is naturally rare, but can be produced by...Ch. 32 - Two fusion reactions mentioned in the text are...Ch. 32 - (a) Calculate the number of grams of deuterium in...Ch. 32 - How many kilograms of water are needed to obtain...Ch. 32 - The power output of the Sun is 41026W. (a) If 90%...Ch. 32 - Another set of reactions that result in the fusing...Ch. 32 - (a) Find the total energy released in MeV in each...Ch. 32 - Verify that the total number of nucleons, total...Ch. 32 - Integrated Concepts The laser system tested for...Ch. 32 - Integrated Concepts Find the amount of energy...Ch. 32 - Integrated Concepts: (a) What temperature gas...Ch. 32 - Integrated Concepts (a) Estimate the years 1hat1he...Ch. 32 - (a) Calculate the energy released in the...Ch. 32 - (a) Calculate the energy released in the...Ch. 32 - (a) Calculate the energy released in the...Ch. 32 - Confirm that each at the reactions listed for...Ch. 32 - Breeding plutonium produces energy even before any...Ch. 32 - The naturally occurring radioactive isotope 232Th...Ch. 32 - The electrical power output of a large nuclear...Ch. 32 - A large power reactor that has been in operation...Ch. 32 - Find the mass converted into energy by a 12.0kT...Ch. 32 - What mass is converted into energy by a 1.00MT...Ch. 32 - Fusion bombs use neutrons from their fission...Ch. 32 - It is estimated that the total explosive yield of...Ch. 32 - A radiationenhanced nuclear weapon (or neutron...Ch. 32 - (a) How many 239Pu nuclei must fission to produce...Ch. 32 - Assume onefourth of the yield of a typical 320kT...Ch. 32 - This problem gives some idea of the magnitude of...Ch. 32 - It is estimated that weapons tests in the...Ch. 32 - A 1.00MT bomb exploded a few kilometers above the...Ch. 32 - Integrated Concepts One scheme to put nuclear...Ch. 32 - Prob. 1TPCh. 32 - Prob. 2TPCh. 32 - Prob. 3TPCh. 32 - Prob. 4TPCh. 32 - Prob. 5TPCh. 32 - Prob. 6TPCh. 32 - Prob. 7TPCh. 32 - Prob. 8TPCh. 32 - Prob. 9TPCh. 32 - Prob. 10TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
WHAT IF? As a cell begins the process of dividing, its chromosomes become shorter, thicker, and individually vi...
Campbell Biology in Focus (2nd Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
41. A hollow metal sphere has 6 cm and 10 cm inner and outer radii, respectively. The surface charge density on...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical. (a) What is the thermal nuclear power output in megawatts? (b) How many 235U nuclei fission each second, assuming the average fission produces 200 MeV? (c) What mass of 235U is fissioned in one year of fullpower operation?arrow_forwardTritium is naturally rare, but can be produced by the reaction n+2H3H+. How much energy in MeV is released in this neutron capture?arrow_forward(a) Calculate the energy released in the neutroninduced fission reaction n+239Pu96Sr+140Ba+4n, given m(96Sr)=95.921750u and m(140Ba)=139.910581u. (b) Confirm that the total number of nucleons and total charge are conserved in this reaction.arrow_forward
- The electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical power. What is the thermal nuclear power output in megawatts? How many 235U nuclei fission each second, assuming the average fission produces 200 MeV? What mass of 235U is fissioned in 1 year of full-power operation?arrow_forward(a) Find the total energy released in MeV in each carbon cycle (elaborated in the above problem) including the annihilation energy. (b) How does this compare with the protonproton cycle output?arrow_forward(a) Background radiation due to 226Ra averages only 0.01 mSv/y, but it can range upward depending on where a 226Ra in the 80.0kg body of a man who receives a dose of 2.50mSv/y from it, noting that each 226Ra decay emits a 4.80MeV particle. You may person lives. Find the mass of neglect dose due to daughters and assume a constant amount, evenly distributed due to balanced ingestion and handily elimination. (b) Is it surprising that such a small mass could cause a measurable radiation dose? Explain.arrow_forward
- (a) Write the complete a decay equation for 249Cf. (b) Find the energy released in the decay.arrow_forward(a) Write the decay equation for the decay of 235U. (b) What energy is released in this decay? The mass of the daughter nuclide is 231.036298 u. (c) Assuming the residual nucleus is formed in its ground state, how much energy goes to the particle?arrow_forwardIn the following eight problems, write the complete decay equation for the given nuclide in the complete XZAN notation. Refer to the periodic table for values of Z. decay of 40K, a naturally occurring rare isotope of potassium responsible for some of our exposure to background radiation.arrow_forward
- Data from the appendices and the periodic table may be needed for these problems. Show that the activity of the 14C in 1.00 g of 12C found in living tissue is 0.250 Bq.arrow_forward(a) Calculate the energy released in the neutron- Induced fission reaction n+235U92Kr+142Ba+2n , given m(92Kr) = 91.926269 u and m(142Ba)= 141.916361 u. (b) Confirm that the total number of nucleons and total charge are conserved in this reaction.arrow_forwardLarge amounts of 65Zn are produced in copper exposed to accelerator beams. While machining contaminated copper, a physicist ingests 50.0 Ci of 65Zn. Each 65Zn decay emits an average ray energy of 0.550 MeV, 40.0% of which is absorbed in the scientist’s 75.0kg body. What dose in mSv is caused by this in one day?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax