The Heart of Mathematics: An Invitation to Effective Thinking
The Heart of Mathematics: An Invitation to Effective Thinking
4th Edition
ISBN: 9781118156599
Author: Edward B. Burger, Michael Starbird
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 3.2, Problem 32MS

The big city (S). Not-Finite City (also known as The Really Big Apple) is made up of infinitely many avenues running north and south (one avenue for each natural number) and infinitely many streets running east and west (one street for each natural number). A traffic light is placed at every intersection of a street with an avenue. How many traffic lights are there? Does the set of all traffic lights have the same cardinality as the set of natural numbers? If not, explain why. If so, provide a one-to-one correspondence.

Blurred answer

Chapter 3 Solutions

The Heart of Mathematics: An Invitation to Effective Thinking

Ch. 3.1 - 791ZWV. Suppose a stranger tells you that the...Ch. 3.1 - 2452345. Suppose a stranger tells you that her...Ch. 3.1 - Social security (H). Is there a one-to-one...Ch. 3.1 - Testing one two three. A professor wishes to...Ch. 3.1 - Laundry day (ExH). Suppose you are given a bag of...Ch. 3.1 - Hair counts. Do there exist two nonbald people on...Ch. 3.1 - Social number (S). Social Security numbers contain...Ch. 3.1 - Prob. 18MSCh. 3.1 - Dining hall blues. One day in Ralph P. Uke Dining...Ch. 3.1 - Dorm life(H). Every student at a certain college...Ch. 3.1 - Pigeonhole principle. Recall the Pigeonhole...Ch. 3.1 - Mother and child. Every child has one and only one...Ch. 3.1 - Coast to coast. Jessica is working part-time from...Ch. 3.1 - An interesting correspondence. Suppose you invest...Ch. 3.1 - Chicken Little. With increased attention to eating...Ch. 3.1 - Table for four. The table below shows a one-to-one...Ch. 3.1 - Square table. The table below shows a one-to-one...Ch. 3.2 - Au natural. Describe the set of natural numbers.Ch. 3.2 - Prob. 2MSCh. 3.2 - Set setup. We can denote the natural numbers...Ch. 3.2 - Little or large. Which of the sets in Mindscape 3...Ch. 3.2 - A word you can count on. Define the cardinality of...Ch. 3.2 - Prob. 6MSCh. 3.2 - Naturally even. Let E stand for the set of all...Ch. 3.2 - Fives take over. Let EIF be the set of all natural...Ch. 3.2 - Six times as much (EH). If we let N stand for the...Ch. 3.2 - Any times as much. If we let N stand for the set...Ch. 3.2 - Missing 3 (H). Let TIM be the set of all natural...Ch. 3.2 - One weird set. Let OWS (you figure it out) be the...Ch. 3.2 - Squaring off. Let S stand for the set of all...Ch. 3.2 - Counting Cubes (formerly Crows). Let C stand for...Ch. 3.2 - Reciprocals. Suppose R is the set defined by R={...Ch. 3.2 - Hotel Cardinality (formerly California) (H). It is...Ch. 3.2 - Hotel Cardinality continued. Given the scenario in...Ch. 3.2 - More Hotel C (EH). Given the scenario in Mindscape...Ch. 3.2 - So much sand. Prove that there cannot be an...Ch. 3.2 - Prob. 20MSCh. 3.2 - Pruning sets. Suppose you have a set. If you...Ch. 3.2 - A natural prune. Describe a collection of numbers...Ch. 3.2 - Prune growth. Is it possible to remove things from...Ch. 3.2 - Same cardinality? Suppose we have two sets and we...Ch. 3.2 - Still the same? (S). Suppose we have two sets, and...Ch. 3.2 - Modest rationals (H). Devise and then describe a...Ch. 3.2 - A window of rationals. Using your answer to...Ch. 3.2 - Bowling ball barrel. Suppose you have infinitely...Ch. 3.2 - Not a total loss. Take the set of natural numbers...Ch. 3.2 - Prob. 30MSCh. 3.2 - Piles of peanuts (ExH). You have infinitely many...Ch. 3.2 - The big city (S). Not-Finite City (also known as...Ch. 3.2 - Dont lose your marbles. Suppose you have...Ch. 3.2 - Make a guess. Guess an infinite set that does not...Ch. 3.2 - Coloring. Consider the infinite collection of...Ch. 3.2 - Ping-Pong balls on parade (H). This Mindscape is...Ch. 3.2 - Primes. Show that the set of all prime numbers has...Ch. 3.2 - A grand union. Suppose you have two sets, and each...Ch. 3.2 - Unnoticeable pruning. Suppose you have any...Ch. 3.2 - Pink ping pong possibilities. You have a box...Ch. 3.2 - Plot the dots (H). The table below gives a...Ch. 3.2 - 1 to 1 or not 1 to 1? Does the table below give a...Ch. 3.2 - Roommates. Your school has 4000 students who want...Ch. 3.3 - Shake em up. What did Georg Cantor do that shook...Ch. 3.3 - Detecting digits. Heres a list of three numbers...Ch. 3.3 - Delving into digits. Consider the real number...Ch. 3.3 - Undercover friend (ExH). Your friend gives you a...Ch. 3.3 - Underhanded friend. Now you friend shows, you a...Ch. 3.3 - Dodgeball. Revisit the game of Dodgeball from...Ch. 3.3 - Dont dodge the connection (S). Explain the...Ch. 3.3 - Cantor with 3s and 7s. Rework Cantors proof from...Ch. 3.3 - Cantor with 4s and 8s. Rework Cantors proof from...Ch. 3.3 - Think positive. Prove that the cardinality of the...Ch. 3.3 - Diagonalization. Cantors proof is often referred...Ch. 3.3 - Digging through diagonals. First, consider the...Ch. 3.3 - Coloring revisited (ExH). In Mindscape 35 of the...Ch. 3.3 - Prob. 14MSCh. 3.3 - The first digit (H). Suppose that, in constructing...Ch. 3.3 - Ones and twos (H). Show that the set of all real...Ch. 3.3 - Pairs (S). In Cantors argument, is it possible to...Ch. 3.3 - Three missing. Given a list of real numbers, as in...Ch. 3.3 - Prob. 19MSCh. 3.3 - Prob. 20MSCh. 3.3 - Nines. Would Cantors argument work if we used 2...Ch. 3.3 - Missing irrational. Could you modify the...Ch. 3.3 - Logging cardinality. The function graphed here is...Ch. 3.3 - U-graph it. Using a graphic or on-line calculator,...Ch. 3.3 - Is a square a one-to-one correspondence? (H)...Ch. 3.3 - Is a cube a one-to-one correspondence? Sketch a...Ch. 3.3 - Find the digit. Your friend is thinking of a real...Ch. 3.4 - Prob. 1MSCh. 3.4 - Power play. Define the power set of a given set.Ch. 3.4 - Prob. 3MSCh. 3.4 - Prob. 4MSCh. 3.4 - Solar power. What is the cardinality of the power...Ch. 3.4 - All in the family (ExH). A family of four tries to...Ch. 3.4 - Making an agenda (H). There are eight members on...Ch. 3.4 - The power of sets (S). Let S={ !,@,#,$,%, }. Below...Ch. 3.4 - Prob. 9MSCh. 3.4 - Identifying the power. Let S be the set given by...Ch. 3.4 - Prob. 11MSCh. 3.4 - Another two. Suppose S is the set defined by S={...Ch. 3.4 - Prob. 13MSCh. 3.4 - Finite Cantor (H). Suppose that S is the set...Ch. 3.4 - One real big set. Describe (in words) a set whose...Ch. 3.4 - Prob. 16MSCh. 3.4 - The Ultra Grand Hotel (S). Could there be an...Ch. 3.4 - Prob. 18MSCh. 3.4 - Prob. 19MSCh. 3.4 - The number name paradox. Let S be the set of all...Ch. 3.4 - Adding another. Suppose that you have any infinite...Ch. 3.4 - Ones and twos. Describe a one-to-one...Ch. 3.4 - Enjoying the exponential function. Consider the...Ch. 3.4 - Prob. 28MSCh. 3.4 - Power play. Simplify the following expressions:...Ch. 3.4 - Powerful products. For each funciton given below,...Ch. 3.4 - Generalizing equality. Throughout this chapter we...Ch. 3.5 - Lining up. Can you draw a line segment that has...Ch. 3.5 - Reading between the lines. Use the figure below to...Ch. 3.5 - De line and Descartes. Put line segments L and M...Ch. 3.5 - Red line rendezvous (H). Given the equation for...Ch. 3.5 - Rendezvous two. Given the equation for the red...Ch. 3.5 - A circle is a cirde (H). Prove that a small circle...Ch. 3.5 - A circle is a square. Prove that a small circle...Ch. 3.5 - A circle is a triangle. Prove that a small circle...Ch. 3.5 - Stereo connections (ExH). Given the stereogiaphic...Ch. 3.5 - More stereo connections. Given the stereographic...Ch. 3.5 - Perfect shuffle problems (H). Suppose we used our...Ch. 3.5 - More perfect shuffle problems. Suppose we used our...Ch. 3.5 - Gouping digits. Given the grouping of digits...Ch. 3.5 - Where it came from. Given the grouping of digits...Ch. 3.5 - Group fix (S). Consider the point on the line from...Ch. 3.5 - Is there more to a cube? Prove that the...Ch. 3.5 - T and L (H). Prove that the cardinalities of...Ch. 3.5 - Infinitely long is long. Must it be the case that...Ch. 3.5 - Plugging up the north pole (ExH). What would...Ch. 3.5 - 3D stereo (S). Let S be the set of points on the...Ch. 3.5 - Stereo images. Given your answer to the preceding...Ch. 3.5 - Ground shuffle. Carefully verify that the pairing...Ch. 3.5 - Giving the rolled-up interval a tan. The graph...Ch. 3.5 - Back and forth. The function y=5x2 gives a...Ch. 3.5 - Forth and back. The function y=3x+1 gives a...Ch. 3.5 - Lining up (H). Find a function that gives a...Ch. 3.5 - Queuing up. Find a function that gives a...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
What is a Relation? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=hV1_wvsdJCE;License: Standard YouTube License, CC-BY
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY