The Heart of Mathematics: An Invitation to Effective Thinking
4th Edition
ISBN: 9781118156599
Author: Edward B. Burger, Michael Starbird
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.5, Problem 17MS
T and L (H). Prove that the cardinalities of points in the following two geometrical objects are equal (these objects are made up of little line segments—-so they have no thickness).
T L
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For context, the images attached below (the question and the related figure) is from a january 2024 past paper
For context, the image attached below is a question from a June 2024 past paper in statisical modeling
For context, the images attached below are a question from a June, 2024 past paper in statistical modeling
Chapter 3 Solutions
The Heart of Mathematics: An Invitation to Effective Thinking
Ch. 3.1 - Still the one. What is a one-to-one...Ch. 3.1 - Prob. 2MSCh. 3.1 - Numerical nephwe. At a family gathering, your...Ch. 3.1 - Pile of packs. You walk into class late and notice...Ch. 3.1 - Bunch of balls. Your first job every morning at...Ch. 3.1 - The same, but unsure how much (H). We have used a...Ch. 3.1 - Taking stock (S). It turns out that there is a...Ch. 3.1 - Prob. 8MSCh. 3.1 - Heres looking @ ®. The following collections...Ch. 3.1 - Enough underwear. When Deb packs for a trip, she...
Ch. 3.1 - 791ZWV. Suppose a stranger tells you that the...Ch. 3.1 - 2452345. Suppose a stranger tells you that her...Ch. 3.1 - Social security (H). Is there a one-to-one...Ch. 3.1 - Testing one two three. A professor wishes to...Ch. 3.1 - Laundry day (ExH). Suppose you are given a bag of...Ch. 3.1 - Hair counts. Do there exist two nonbald people on...Ch. 3.1 - Social number (S). Social Security numbers contain...Ch. 3.1 - Prob. 18MSCh. 3.1 - Dining hall blues. One day in Ralph P. Uke Dining...Ch. 3.1 - Dorm life(H). Every student at a certain college...Ch. 3.1 - Pigeonhole principle. Recall the Pigeonhole...Ch. 3.1 - Mother and child. Every child has one and only one...Ch. 3.1 - Coast to coast. Jessica is working part-time from...Ch. 3.1 - An interesting correspondence. Suppose you invest...Ch. 3.1 - Chicken Little. With increased attention to eating...Ch. 3.1 - Table for four. The table below shows a one-to-one...Ch. 3.1 - Square table. The table below shows a one-to-one...Ch. 3.2 - Au natural. Describe the set of natural numbers.Ch. 3.2 - Prob. 2MSCh. 3.2 - Set setup. We can denote the natural numbers...Ch. 3.2 - Little or large. Which of the sets in Mindscape 3...Ch. 3.2 - A word you can count on. Define the cardinality of...Ch. 3.2 - Prob. 6MSCh. 3.2 - Naturally even. Let E stand for the set of all...Ch. 3.2 - Fives take over. Let EIF be the set of all natural...Ch. 3.2 - Six times as much (EH). If we let N stand for the...Ch. 3.2 - Any times as much. If we let N stand for the set...Ch. 3.2 - Missing 3 (H). Let TIM be the set of all natural...Ch. 3.2 - One weird set. Let OWS (you figure it out) be the...Ch. 3.2 - Squaring off. Let S stand for the set of all...Ch. 3.2 - Counting Cubes (formerly Crows). Let C stand for...Ch. 3.2 - Reciprocals. Suppose R is the set defined by R={...Ch. 3.2 - Hotel Cardinality (formerly California) (H). It is...Ch. 3.2 - Hotel Cardinality continued. Given the scenario in...Ch. 3.2 - More Hotel C (EH). Given the scenario in Mindscape...Ch. 3.2 - So much sand. Prove that there cannot be an...Ch. 3.2 - Prob. 20MSCh. 3.2 - Pruning sets. Suppose you have a set. If you...Ch. 3.2 - A natural prune. Describe a collection of numbers...Ch. 3.2 - Prune growth. Is it possible to remove things from...Ch. 3.2 - Same cardinality? Suppose we have two sets and we...Ch. 3.2 - Still the same? (S). Suppose we have two sets, and...Ch. 3.2 - Modest rationals (H). Devise and then describe a...Ch. 3.2 - A window of rationals. Using your answer to...Ch. 3.2 - Bowling ball barrel. Suppose you have infinitely...Ch. 3.2 - Not a total loss. Take the set of natural numbers...Ch. 3.2 - Prob. 30MSCh. 3.2 - Piles of peanuts (ExH). You have infinitely many...Ch. 3.2 - The big city (S). Not-Finite City (also known as...Ch. 3.2 - Dont lose your marbles. Suppose you have...Ch. 3.2 - Make a guess. Guess an infinite set that does not...Ch. 3.2 - Coloring. Consider the infinite collection of...Ch. 3.2 - Ping-Pong balls on parade (H). This Mindscape is...Ch. 3.2 - Primes. Show that the set of all prime numbers has...Ch. 3.2 - A grand union. Suppose you have two sets, and each...Ch. 3.2 - Unnoticeable pruning. Suppose you have any...Ch. 3.2 - Pink ping pong possibilities. You have a box...Ch. 3.2 - Plot the dots (H). The table below gives a...Ch. 3.2 - 1 to 1 or not 1 to 1? Does the table below give a...Ch. 3.2 - Roommates. Your school has 4000 students who want...Ch. 3.3 - Shake em up. What did Georg Cantor do that shook...Ch. 3.3 - Detecting digits. Heres a list of three numbers...Ch. 3.3 - Delving into digits. Consider the real number...Ch. 3.3 - Undercover friend (ExH). Your friend gives you a...Ch. 3.3 - Underhanded friend. Now you friend shows, you a...Ch. 3.3 - Dodgeball. Revisit the game of Dodgeball from...Ch. 3.3 - Dont dodge the connection (S). Explain the...Ch. 3.3 - Cantor with 3s and 7s. Rework Cantors proof from...Ch. 3.3 - Cantor with 4s and 8s. Rework Cantors proof from...Ch. 3.3 - Think positive. Prove that the cardinality of the...Ch. 3.3 - Diagonalization. Cantors proof is often referred...Ch. 3.3 - Digging through diagonals. First, consider the...Ch. 3.3 - Coloring revisited (ExH). In Mindscape 35 of the...Ch. 3.3 - Prob. 14MSCh. 3.3 - The first digit (H). Suppose that, in constructing...Ch. 3.3 - Ones and twos (H). Show that the set of all real...Ch. 3.3 - Pairs (S). In Cantors argument, is it possible to...Ch. 3.3 - Three missing. Given a list of real numbers, as in...Ch. 3.3 - Prob. 19MSCh. 3.3 - Prob. 20MSCh. 3.3 - Nines. Would Cantors argument work if we used 2...Ch. 3.3 - Missing irrational. Could you modify the...Ch. 3.3 - Logging cardinality. The function graphed here is...Ch. 3.3 - U-graph it. Using a graphic or on-line calculator,...Ch. 3.3 - Is a square a one-to-one correspondence? (H)...Ch. 3.3 - Is a cube a one-to-one correspondence? Sketch a...Ch. 3.3 - Find the digit. Your friend is thinking of a real...Ch. 3.4 - Prob. 1MSCh. 3.4 - Power play. Define the power set of a given set.Ch. 3.4 - Prob. 3MSCh. 3.4 - Prob. 4MSCh. 3.4 - Solar power. What is the cardinality of the power...Ch. 3.4 - All in the family (ExH). A family of four tries to...Ch. 3.4 - Making an agenda (H). There are eight members on...Ch. 3.4 - The power of sets (S). Let S={ !,@,#,$,%, }. Below...Ch. 3.4 - Prob. 9MSCh. 3.4 - Identifying the power. Let S be the set given by...Ch. 3.4 - Prob. 11MSCh. 3.4 - Another two. Suppose S is the set defined by S={...Ch. 3.4 - Prob. 13MSCh. 3.4 - Finite Cantor (H). Suppose that S is the set...Ch. 3.4 - One real big set. Describe (in words) a set whose...Ch. 3.4 - Prob. 16MSCh. 3.4 - The Ultra Grand Hotel (S). Could there be an...Ch. 3.4 - Prob. 18MSCh. 3.4 - Prob. 19MSCh. 3.4 - The number name paradox. Let S be the set of all...Ch. 3.4 - Adding another. Suppose that you have any infinite...Ch. 3.4 - Ones and twos. Describe a one-to-one...Ch. 3.4 - Enjoying the exponential function. Consider the...Ch. 3.4 - Prob. 28MSCh. 3.4 - Power play. Simplify the following expressions:...Ch. 3.4 - Powerful products. For each funciton given below,...Ch. 3.4 - Generalizing equality. Throughout this chapter we...Ch. 3.5 - Lining up. Can you draw a line segment that has...Ch. 3.5 - Reading between the lines. Use the figure below to...Ch. 3.5 - De line and Descartes. Put line segments L and M...Ch. 3.5 - Red line rendezvous (H). Given the equation for...Ch. 3.5 - Rendezvous two. Given the equation for the red...Ch. 3.5 - A circle is a cirde (H). Prove that a small circle...Ch. 3.5 - A circle is a square. Prove that a small circle...Ch. 3.5 - A circle is a triangle. Prove that a small circle...Ch. 3.5 - Stereo connections (ExH). Given the stereogiaphic...Ch. 3.5 - More stereo connections. Given the stereographic...Ch. 3.5 - Perfect shuffle problems (H). Suppose we used our...Ch. 3.5 - More perfect shuffle problems. Suppose we used our...Ch. 3.5 - Gouping digits. Given the grouping of digits...Ch. 3.5 - Where it came from. Given the grouping of digits...Ch. 3.5 - Group fix (S). Consider the point on the line from...Ch. 3.5 - Is there more to a cube? Prove that the...Ch. 3.5 - T and L (H). Prove that the cardinalities of...Ch. 3.5 - Infinitely long is long. Must it be the case that...Ch. 3.5 - Plugging up the north pole (ExH). What would...Ch. 3.5 - 3D stereo (S). Let S be the set of points on the...Ch. 3.5 - Stereo images. Given your answer to the preceding...Ch. 3.5 - Ground shuffle. Carefully verify that the pairing...Ch. 3.5 - Giving the rolled-up interval a tan. The graph...Ch. 3.5 - Back and forth. The function y=5x2 gives a...Ch. 3.5 - Forth and back. The function y=3x+1 gives a...Ch. 3.5 - Lining up (H). Find a function that gives a...Ch. 3.5 - Queuing up. Find a function that gives a...
Additional Math Textbook Solutions
Find more solutions based on key concepts
CLT Shapes (Example 4) One of the histograms is a histogram of a sample (from a population with a skewed distri...
Introductory Statistics
Fill in each blank so that the resulting statement is true. An equation that expresses a relationship between t...
Algebra and Trigonometry (6th Edition)
Sampling Method. In Exercises 9-12, determine whether the sampling method appears to be sound or is flawed.
9. ...
Elementary Statistics
Identifying Type I and Type II Errors In Exercises 31–36, describe type I and type II errors for a hypothesis t...
Elementary Statistics: Picturing the World (7th Edition)
Answer each of the following and explain your answer. a. How many lines can contain a particular segment? b. Ho...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
The 16 sequences in the sample space S.
Probability And Statistical Inference (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- For context, the images attached below (question and related graph) are from a February 2024 past paper in statistical modelingarrow_forwardFor context, the images attached below are from a February 2024 past paper in statistical modelingarrow_forwardFor context, the image provided below is a question from a September, 2024 past paper in statistical modelingarrow_forward
- A function is defined on the interval (-π/2,π/2) by this multipart rule: if -π/2 < x < 0 f(x) = a if x=0 31-tan x +31-cot x if 0 < x < π/2 Here, a and b are constants. Find a and b so that the function f(x) is continuous at x=0. a= b= 3arrow_forwardUse the definition of continuity and the properties of limits to show that the function is continuous at the given number a. f(x) = (x + 4x4) 5, a = -1 lim f(x) X--1 = lim x+4x X--1 lim X-1 4 x+4x 5 ))" 5 )) by the power law by the sum law lim (x) + lim X--1 4 4x X-1 -(0,00+( Find f(-1). f(-1)=243 lim (x) + -1 +4 35 4 ([ ) lim (x4) 5 x-1 Thus, by the definition of continuity, f is continuous at a = -1. by the multiple constant law by the direct substitution propertyarrow_forward4 Use Cramer's rule to solve for x and t in the Lorentz-Einstein equations of special relativity:x^(')=\gamma (x-vt)t^(')=\gamma (t-v(x)/(c^(2)))where \gamma ^(2)(1-(v^(2))/(c^(2)))=1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
What is a Relation? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=hV1_wvsdJCE;License: Standard YouTube License, CC-BY
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY