Foundations of Materials Science and Engineering
Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
bartleby

Concept explainers

Question
Book Icon
Chapter 3.15, Problem 29AAP

(a)

To determine

Show the cubic direction [010] in a BCC unit cell. Write the position coordinates of the atoms with their centers intersected by each plane. Find the repeat distance in plane direction [010] in terms of lattice constant.

(a)

Expert Solution
Check Mark

Explanation of Solution

Show the cubic direction [010] in the BCC unit cell as in Figure (1).

Foundations of Materials Science and Engineering, Chapter 3.15, Problem 29AAP , additional homework tip  1

Position coordinates:

For the cubic direction [010], the position coordinates of the atoms are (0,0,0), and (0,1,0).

Repeat distance:

For the cubic direction [010], the repeat distance is the distance between the corner atoms and the center of the atoms which is a. Therefore, the repeat distance is a.

(b)

To determine

Show the cubic direction [011] in the BCC unit cell. Write the position coordinates of the atoms with their centers intersected by each plane. Find the repeat distance in plane direction [011] in terms of lattice constant.

(b)

Expert Solution
Check Mark

Explanation of Solution

Show the cubic direction [011] in the BCC unit cell as in Figure (2).

Foundations of Materials Science and Engineering, Chapter 3.15, Problem 29AAP , additional homework tip  2

Position coordinates:

For the cubic direction [011], the position coordinates of the atoms are (0,0,0), and (0,1,1).

Repeat distance:

For the cubic direction [011], the repeat distance is the distance between the centers of the corner atoms which is 2a. Therefore, the repeat distance is 2a.

(c)

To determine

Show the cubic direction [111] in the BCC unit cell. Write the position coordinates of the atoms with their centers intersected by each plane. Find the repeat distance in plane direction [111] in terms of lattice constant.

(c)

Expert Solution
Check Mark

Explanation of Solution

Show the cubic direction [111] in the BCC unit cell as in Figure (3).

Foundations of Materials Science and Engineering, Chapter 3.15, Problem 29AAP , additional homework tip  3

Position coordinates:

For the cubic direction [111], the position coordinates of the atoms are (0,0,0), and (1,1,1).

Repeat distance:

For the cubic direction [111], the repeat distance is the distance between the center of BCC center atom and the center of the corner atoms which is 32a. Therefore, the repeat distance is 32a.

(d)

To determine

The angle between the cubic directions [011] and [111].

(d)

Expert Solution
Check Mark

Answer to Problem 29AAP

The angle between the cubic directions [011] and [111] is 35.26°.

Explanation of Solution

Write the expression to calculate angle between the cubic directions (θ).

  θ=cos1[h1h2+k1k2+l1l2h12+k12+l12h22+k22+l22]                                                                    (I)

Here, Miller indices of the cubic plane 1 are h1, k1 and l1 respectively and Miller indices of the cubic plane 2 are h2, k2 and l2 respectively.

Conclusion:

Substitute 0 for h1, 1 for k1, 1 for l1, 1 for h2, 1 for k2 and 1 for l2 in Equation (I).

 θ=cos1[(0)(1)+(1)(1)+(1)(1)02+12+1212+12+12]=cos1[2(2)(3)]=cos1(0.8165)=35.26°

Thus, the angle between the cubic directions [011] and [111] is 35.26°.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Spur gears Note : Exam is open notes &tables / Answer all questions. Q.1. The press shown for Figure.1 has a rated load of 22 kN. The twin screws have double start Acme threads, a diameter of 50 mm, and a pitch of 6 mm. Coefficients of friction are 0.05 for the threads and 0.08 for the collar bearings. Collar diameters are 90 mm. The gears have an efficiency of 95 percent and a speed ratio of 60:1. A slip clutch, on the motor shaft, prevents overloading. The full-load motor speed is 1720 rev/min. (a) When the motor is turned on, how fast will the press head move? (Vm= , Vser. = ) (5M) (b) What should be the horsepower rating of the motor? (TR=, Tc= Pser. = " Bronze bushings Foot Motor Bearings watt, Pm= watt, Pm= h.p.) (20M) 2['s Fig.1 Worm Collar bearing
Problem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.
An aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.

Chapter 3 Solutions

Foundations of Materials Science and Engineering

Ch. 3.15 - Prob. 11KCPCh. 3.15 - Prob. 12KCPCh. 3.15 - Prob. 13KCPCh. 3.15 - Prob. 14KCPCh. 3.15 - Prob. 15KCPCh. 3.15 - Prob. 16KCPCh. 3.15 - Prob. 17KCPCh. 3.15 - Prob. 18KCPCh. 3.15 - Prob. 19KCPCh. 3.15 - Prob. 20KCPCh. 3.15 - Prob. 21KCPCh. 3.15 - Prob. 22KCPCh. 3.15 - Prob. 23KCPCh. 3.15 - Prob. 24AAPCh. 3.15 - Prob. 25AAPCh. 3.15 - Prob. 26AAPCh. 3.15 - Prob. 27AAPCh. 3.15 - Prob. 28AAPCh. 3.15 - Prob. 29AAPCh. 3.15 - Prob. 30AAPCh. 3.15 - Prob. 31AAPCh. 3.15 - Prob. 33AAPCh. 3.15 - A direction vector passes through a unit cube from...Ch. 3.15 - Prob. 36AAPCh. 3.15 - Prob. 37AAPCh. 3.15 - Prob. 38AAPCh. 3.15 - Prob. 41AAPCh. 3.15 - Prob. 42AAPCh. 3.15 - Prob. 43AAPCh. 3.15 - Prob. 44AAPCh. 3.15 - Prob. 45AAPCh. 3.15 - Prob. 46AAPCh. 3.15 - Prob. 47AAPCh. 3.15 - Rodium is FCC and has a lattice constant a of...Ch. 3.15 - Prob. 49AAPCh. 3.15 - Prob. 50AAPCh. 3.15 - Prob. 51AAPCh. 3.15 - Prob. 52AAPCh. 3.15 - Prob. 53AAPCh. 3.15 - Prob. 54AAPCh. 3.15 - Prob. 55AAPCh. 3.15 - Determine the Miller-Bravais direction indices of...Ch. 3.15 - Determine the Miller-Bravais direction indices of...Ch. 3.15 - Prob. 58AAPCh. 3.15 - Prob. 59AAPCh. 3.15 - Prob. 60AAPCh. 3.15 - Prob. 61AAPCh. 3.15 - Prob. 62AAPCh. 3.15 - Prob. 63AAPCh. 3.15 - Prob. 64AAPCh. 3.15 - Prob. 65AAPCh. 3.15 - Prob. 66AAPCh. 3.15 - Prob. 67AAPCh. 3.15 - Prob. 68AAPCh. 3.15 - Prob. 69AAPCh. 3.15 - Prob. 70AAPCh. 3.15 - Prob. 71AAPCh. 3.15 - Prob. 72AAPCh. 3.15 - Prob. 73AAPCh. 3.15 - Prob. 74SEPCh. 3.15 - Prob. 75SEPCh. 3.15 - Prob. 76SEPCh. 3.15 - Assuming that the volume of an HCP metal cell...Ch. 3.15 - Prob. 79SEPCh. 3.15 - Prob. 80SEPCh. 3.15 - Prob. 81SEPCh. 3.15 - Prob. 82SEPCh. 3.15 - Prob. 83SEPCh. 3.15 - Prob. 84SEPCh. 3.15 - Prob. 85SEPCh. 3.15 - Prob. 86SEPCh. 3.15 - Prob. 87SEPCh. 3.15 - Prob. 88SEPCh. 3.15 - Prob. 89SEPCh. 3.15 - Prob. 90SEPCh. 3.15 - Prob. 91SEPCh. 3.15 - Prob. 92SEPCh. 3.15 - Prob. 93SEPCh. 3.15 - Prob. 94SEPCh. 3.15 - Prob. 95SEPCh. 3.15 - Prob. 96SEP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY