
Concept explainers
The reason of the large spaces of blue sky between the cumulus clouds.

Answer to Problem 13TE
The temperature fluctuation of the air is the reason for the large spaces of blue sky between the cumulus clouds.
Explanation of Solution
The air present in the atmosphere has a different temperature at different places. As the temperature varies, the density of the air also varies. This variation of density causes less dense clouds at some places in the sky.
There are cumulus clouds distributed in the atmosphere in such a way that there are some spaces present in between the clouds. The main reason behind this is the temperature fluctuations of the air.
Conclusion:
Therefore, the temperature fluctuation of the air is the reason for the large spaces of blue sky between the cumulus clouds.
Chapter 31 Solutions
Conceptual Physical Science Explorations
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Microbiology: An Introduction
Chemistry: Structure and Properties (2nd Edition)
College Physics: A Strategic Approach (3rd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Chemistry & Chemical Reactivity
- 4 1.00 mol of oxygen gas (O2) is heated at a constant pressure of 1.00 atm from 10.0°C to 25.0°C. How much heat is absorbed by the gas? Multiple Choice О 389 J о 544 J О 436 J О 288 Jarrow_forwardIL 6. For the sentence, why are the red lines representing the formants and the blue line representing the fundamental frequency always angled instead of horizontal?arrow_forwardCH 57. A 190-g block is launched by compressing a spring of constant k = = 200 N/m by 15 cm. The spring is mounted horizontally, and the surface directly under it is frictionless. But beyond the equilibrium position of the spring end, the surface has frictional coefficient μ = 0.27. This frictional surface extends 85 cm, fol- lowed by a frictionless curved rise, as shown in Fig. 7.21. After it's launched, where does the block finally come to rest? Measure from the left end of the frictional zone. Frictionless μ = 0.27 Frictionless FIGURE 7.21 Problem 57arrow_forward
- 3. (a) Show that the CM of a uniform thin rod of length L and mass M is at its center (b) Determine the CM of the rod assuming its linear mass density 1 (its mass per unit length) varies linearly from λ = λ at the left end to double that 0 value, λ = 2λ, at the right end. y 0 ·x- dx dm=λdx x +arrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. please show all stepsarrow_forwardAromatic molecules like those in perfume have a diffusion coefficient in air of approximately 2×10−5m2/s2×10−5m2/s. Part A Estimate, to one significant figure, how many hours it takes perfume to diffuse 2.5 mm, about 6.5 ftft, in still air. Express your answer in hours to one significant figure.arrow_forward
- Rocket Science: CH 83. A rocket of mass M moving at speed v ejects an infinitesimal mass dm out its exhaust nozzle at speed vex. (a) Show that con- servation of momentum implies that M dy = vex dm, where dy is the change in the rocket's speed. (b) Integrate this equation from some initial speed v; and mass M; to a final speed vf and mass Mf Vf to show that the rocket's final velocity is given by the expression V₁ = V¡ + Vex ln(M¡/M₁).arrow_forwardFormant Freqmcy The horizontal dotted lines represent the formants. The first box represents the schwa sound. The second box is a different vowel. The scale is the same on each of these two vowels. Use the two formant contours to answer questions 12-16 SCHWA VOWEL 2 0.179362213 Time (s) 0.92125285 0.0299637119 4000 1079 Time(s) unknown 0.6843 13. Please describe what the tongue is doing to shift from the schwa to vowel 2? 14. Is vowel 2 a rounded or unrounded vowel? 15. Is vowel 2 a front or back vowel? 16. What vowel is vowel 2 (00, ee, ah) 0684285714arrow_forwardmicrowavearrow_forward
- 4) Consider the pulley (Mass = 20kg, Radius 0.3m) shown in the picture. Model this pulley as a uniform solid disk (1 = (1/2) MR2) that is hinged at its center of mass. If the hanging mass is 30 kg, and is released, (a) compute the angular acceleration of the pulley (b) calculate the acceleration of the hanging mass. A o 0.3 3019 20KSarrow_forwardRefer to the image attachedarrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





