Organic Chemistry
5th Edition
ISBN: 9780078021558
Author: Janice Gorzynski Smith Dr.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 30, Problem 30.41P
Interpretation Introduction
Interpretation: The reason corresponding to the fact that the acrylonitrile
Concept introduction: The cationic polymerization is a chain growth polymerization. In this reaction, a charge is transferred to a monomer by the cationic initiator. After the transfer of charge, the monomer becomes reactive. This monomer gain reacts with other monomers in a similar way and forms a
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Rank the following groups of monomers from most able to least able to undergo cationic polymerization:
Can you explain condensation polymerization and give an example with structure of one with 2 carboxylic acid groups and 2 OH groups.
Draw the repeating unit of the step-growth polymer that is formed from the following pairs of monomers:
Chapter 30 Solutions
Organic Chemistry
Ch. 30 - Prob. 30.1PCh. 30 - Prob. 30.2PCh. 30 - Prob. 30.3PCh. 30 - Draw the mechanism for the radical polymerization...Ch. 30 - Prob. 30.5PCh. 30 - Prob. 30.6PCh. 30 - Prob. 30.7PCh. 30 - Prob. 30.8PCh. 30 - Prob. 30.9PCh. 30 - Prob. 30.10P
Ch. 30 - Prob. 30.11PCh. 30 - Problem 30.12
What polymer is formed by anionic...Ch. 30 - Prob. 30.13PCh. 30 - Prob. 30.14PCh. 30 - Problem 30.15
What polyamide is formed from each...Ch. 30 - Prob. 30.16PCh. 30 - Prob. 30.17PCh. 30 - Prob. 30.18PCh. 30 - Prob. 30.19PCh. 30 - Prob. 30.20PCh. 30 - Prob. 30.21PCh. 30 - Prob. 30.22PCh. 30 - Prob. 30.23PCh. 30 - Prob. 30.24PCh. 30 - Prob. 30.25PCh. 30 - 30.26 Draw the structure of the polymer formed by...Ch. 30 - Prob. 30.27PCh. 30 - Prob. 30.28PCh. 30 - Prob. 30.29PCh. 30 - 30.30 Draw each polymer in Problem 30.29 using the...Ch. 30 - Prob. 30.31PCh. 30 - Prob. 30.32PCh. 30 - Prob. 30.33PCh. 30 - Prob. 30.34PCh. 30 - Prob. 30.35PCh. 30 - Prob. 30.36PCh. 30 - Prob. 30.37PCh. 30 - Prob. 30.38PCh. 30 - 30.39 Draw a stepwise mechanism for the...Ch. 30 - 30.40 Cationic polymerization of 3-phenylpropene ...Ch. 30 - Prob. 30.41PCh. 30 - Prob. 30.42PCh. 30 - 30.43 Although styrene undergoes both cationic and...Ch. 30 - 30.44 Rank the following compounds in order of...Ch. 30 - Prob. 30.45PCh. 30 - Prob. 30.46PCh. 30 - 30.47 Draw a stepwise mechanism for the following...Ch. 30 - 30.48 Draw a stepwise mechanism for the reaction...Ch. 30 - 30.49 Draw the products of each reaction.
a. e....Ch. 30 - Prob. 30.50PCh. 30 - Prob. 30.51PCh. 30 - 30.52 (a) Explain why poly (vinyl alcohol) cannot...Ch. 30 - 30.53 Devise a synthesis of terephthalic acid and...Ch. 30 - Prob. 30.54PCh. 30 - Prob. 30.55PCh. 30 - 30.56 Compound A is a novel poly (ester amide)...Ch. 30 - 30.57 Researchers at Rutgers University have...Ch. 30 - 30.58 Melmac, a thermosetting polymer formed from...Ch. 30 - 30.59 Although chain branching in radical...Ch. 30 - Prob. 30.60P
Knowledge Booster
Similar questions
- Rank the following groups of monomers from most able to least able to undergo cationic polymerization:arrow_forwardDraw the structure of the polymer that results from anionic polymerization of p-trichloromethylstyrene (CCl,CgH,CH=CH2) using ethylene oxide as the electrophile to terminate the chain.arrow_forwardPoly(lactic acid) (PLA) has received much recent attention because the lactic acid monomer [CH3CH(OH)COOH] from which it is made can be obtained from carbohydrates rather than petroleum. This makes PLA a more “environmentally friendly” polyester. (A more in-depth discussion of green polymer synthesis is presented in Chapter 30.) Draw the structure of PLA.arrow_forward
- Explain why acrylonitrile (CH2 = CHCN) undergoes cationic polymerization more slowly than but-3-enenitrile (CH2 = CHCH2CN).arrow_forwardPoly(lactic acid) (PLA) has received much recent attention because the lactic acid monomer [CH3CH(OH)COOH] from which it is made can be obtained from carbohydrates rather than petroleum. This makes PLA a more “environmentally friendly” polyester. (A further discussion of green polymer synthesis is presented in Chapter 28.) Draw the structure of PLA.arrow_forwardThis polymer is composed of 2 monomer units: an acid chloride and an amine. In the box below, draw the structure of both monomers. (8-10 C (CH₂)6-C CH₂ 어 H n • You do not have to consider stereochemistry. • You do not have to explicitly draw H atoms. • Do not include lone pairs in your answer. They will not be considered in the grading. • Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner. • Separate structures with + signs from the drop-down menu.arrow_forward
- Complete the following condensation polymerization reactions by drawing the structural formula of the repeating unitof each polymer, as well as any other products.arrow_forward4. Draw the structure of the polymer which would form when the following molecules react. (draw two units) а. CH2 HO CH2 -N-CH,-N- -CH,-CH2-C- -N-CH,-N- -CH,-CH2- CH он H.arrow_forwardPoly(lactic acid) (PLA) has received much recent attention because the lactic acid monomer [CH3CH(OH)COOH] from which it is made can be obtained from carbohydrates rather than petroleum. This makes PLA a more “environmentally friendly” polyester. Draw the structure of PLAarrow_forward
- Draw (by hand) the monomers used to synthesize poly(ethyl cyanoacrylate) and poly(octyl cyanoacrylate), and chemical structure of the repeat units of each when polymerized.arrow_forwardChetoarrow_forward2. In your own words, explain the difference between step-reaction polymerization and chain-reaction poly- merization. What is the advantage of this terminology over the more traditional addition and condensa- tion polymerization?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning