College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 30, Problem 28PE
The maximum characteristic x-ray photon energy comes from the capture of a free electron into a K shell vacancy. What is this photon energy in keV for tungsten, assuming the free electron has no initial kinetic energy?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Copper has a density of 8.9 g/cm3 and a gram-atomic mass of 63.56. The total atomic attenuation coefficient of copper is 8.8 × 10−24 cm2/atom for 500-keV photons. What thickness (in centimeters) of copper is required to attenuate 500-keV photons to half of the original number?
Fluorescence microscopy, discussed in Section 29.8, is an important tool in modern cell biology. A variation on this technique depends on a phenomenon known as two-photon excitation.If two photons are absorbed simultaneously (i.e., withinabout 10-16 s), their energies can add. A molecule that is normallyexcited by a 350 nm photon can be excited by two photonseach having half as much energy. For this process to beuseful, photons must illuminate the sample at the very high rateof at least 1029 photons/m2 # s. This is achieved by focusing alaser beam to a small spot and by concentrating the power ofthe laser into very short 110-13 s2 pulses that are fired 108 timeseach second. Suppose a biologist wants to use two-photon excitationto excite a molecular species that would be excited by500 nm light in normal one-photon fluorescence microscopy.What minimum intensity 1W/m2 2 must the laser beam haveduring each pulse?
Suppose the fractional efficiency of a metal surface with work function 1.42 eV is 1.0x 10 14. that is, on average one electron is ejected
for every 1014 photons that reach the surface. What would be the current of electrons ejected from such a surface if it were
illuminated with 509 nm light from a 2.01 mW laser and all the ejected electrons took part in the charge flow?
Number
8.24E-22
Units
A
Chapter 30 Solutions
College Physics
Ch. 30 - Name three different types of evidence for the...Ch. 30 - Explain why patterns observed in the periodic...Ch. 30 - If atoms exist, why can't we see them with visible...Ch. 30 - What two pieces of evidence allowed the first...Ch. 30 - How do the allowed orbits for electrons in atoms...Ch. 30 - How do the allowed orbits for electrons in atoms...Ch. 30 - Explain how Bohr's rule for the quantization of...Ch. 30 - What is a hydrogen-like atom, and how are the...Ch. 30 - Explain why characteristic x rays are the most...Ch. 30 - Why does the energy of characteristic x rays...
Ch. 30 - Observers at a safe distance from atmospheric test...Ch. 30 - Lasers are used to burn and read CDs. Explain why...Ch. 30 - Crystal lattices can be examined with x rays but...Ch. 30 - CT scanners do not detect details smaller than...Ch. 30 - How do the allowed orbits for electrons in atoms...Ch. 30 - Atomic and molecular spectra are discrete. What...Ch. 30 - Hydrogen gas can only absorb EM radiation that has...Ch. 30 - Lasers are used to burn and read CDs. Explain why...Ch. 30 - The coating on the inside of fluorescent light...Ch. 30 - What is the difference between fluorescence and...Ch. 30 - How can you tell that a hologram is a true...Ch. 30 - How is the de Broglie wavelength of electrons...Ch. 30 - What is the Zeeman effect, and what type of...Ch. 30 - Define the quantum numbers n,l,ml,s, and ms.Ch. 30 - For a given value of n, what are the allowed...Ch. 30 - For a given value of l, what are the allowed...Ch. 30 - List all the possible values of s and msfor an...Ch. 30 - Identify the shell, subshell, and number of...Ch. 30 - Which of the following are not allowed? State...Ch. 30 - Using the given charge-to-mass ratios for...Ch. 30 - (a) Calculate the mass of a proton using the...Ch. 30 - If someone wanted to build a scale model of the...Ch. 30 - Rutherford found the size of the nucleus to be...Ch. 30 - In Millikan's oil-drop experiment, one looks at a...Ch. 30 - (a) An aspiring physicist wants to build a scale...Ch. 30 - By calculating its wavelength, show that the first...Ch. 30 - Find the wavelength of the third line in the Lyman...Ch. 30 - Look up the values of the quantities in...Ch. 30 - Verify that the ground state energy E0 is 13.6 eV...Ch. 30 - If a hydrogen atom has its electron in the n=4...Ch. 30 - A hydrogen atom in an excited state can be ionized...Ch. 30 - Find the radius of a hydrogen atom in the n=2...Ch. 30 - Show that (13.6eV)/hc=1.097107m=R (Rydberg's...Ch. 30 - What is the smallest-wavelength line in the Balmer...Ch. 30 - Show that the entire Paschen series is in the...Ch. 30 - Do the Balmer and Lyman series overlap? To answer...Ch. 30 - (a) Which line in the Balmer series is the first...Ch. 30 - A wavelength of 4.653 m is observed in a hydrogen...Ch. 30 - A singly ionized helium ion has only one electron...Ch. 30 - A beryllium ion with a single electron (denoted...Ch. 30 - Atoms can be ionized by thermal collisions, such...Ch. 30 - Verify Equations rn=n2ZaB and...Ch. 30 - The wavelength of the four Balmer series lines for...Ch. 30 - (a) What is the shortest-wavelength x-ray...Ch. 30 - A color television tube also generates some x rays...Ch. 30 - An x ray tube has an applied voltage of 100 kV....Ch. 30 - The maximum characteristic x-ray photon energy...Ch. 30 - What are the approximate energies of the K and K...Ch. 30 - Figure 30.39 shows the energy-level diagram for...Ch. 30 - A helium-neon laser is pumped by electric...Ch. 30 - Ruby lasers have chromium atoms doped in an...Ch. 30 - (a) What energy photons can pump chromium atoms in...Ch. 30 - Some of the most powerful lasers are based on the...Ch. 30 - If an atom has an electron in the n=5 state with...Ch. 30 - An atom has an electron with m1=2. What is the...Ch. 30 - What are the possible values of m1 for an electron...Ch. 30 - What, if any, constraints does a value of ml=1...Ch. 30 - (a) Calculate the magnitude of the angular...Ch. 30 - (a) What is the magnitude of the angular momentum...Ch. 30 - Repeat Exercise 30.40 for l=3.Ch. 30 - (a) How many angles can L make with the z-axis for...Ch. 30 - What angles can the spin S of an electron make...Ch. 30 - (a) How many electrons can be in the n=4 shell?...Ch. 30 - (a) What is the minimum value of 1 for a subshell...Ch. 30 - (a) If one subshell of an atom has 9 electrons in...Ch. 30 - (a) List all possible sets of quantum numbers...Ch. 30 - Which of the following spectroscopic notations are...Ch. 30 - Which of the following spectroscopic notations are...Ch. 30 - (a) Using the Pauli exclusion principle and the...Ch. 30 - Integrated Concepts Estimate the density of a...Ch. 30 - Integrated Concepts The electric and magnetic...Ch. 30 - (a) What is the distance between the slits of a...Ch. 30 - Integrated Concepts A galaxy moving away from the...Ch. 30 - Integrated Concepts Calculate the velocity of a...Ch. 30 - Integrated Concepts In a Millikan oil-drop...Ch. 30 - Integrated Concepts What double-slit separation...Ch. 30 - Integrated Concepts In a laboratory experiment...Ch. 30 - Integrated Concepts Find the value of l, the...Ch. 30 - Integrated Concepts Particles called muons exist...Ch. 30 - Integrated Concepts Calculate the minimum amount...Ch. 30 - Integrated Concepts A carbon dioxide laser used in...Ch. 30 - Integrated Concepts Suppose an MRI scanner uses...Ch. 30 - Integrated Concepts (a) An excimer laser used for...Ch. 30 - Integrated Concepts A neighboring galaxy rotates...Ch. 30 - Integrated Concepts A pulsar is a rapidly spinning...Ch. 30 - Integrated Concepts Prove that the velocity of...Ch. 30 - Unreasonable Results (a) What voltage must be...Ch. 30 - Unreasonable Results A student in a physics...Ch. 30 - Construct Your Own Problem The solar corona is so...Ch. 30 - Construct Your Own Problem Consider the...Ch. 30 - Prob. 1TPCh. 30 - Prob. 2TPCh. 30 - Prob. 3TPCh. 30 - Prob. 4TPCh. 30 - Prob. 5TPCh. 30 - Prob. 6TPCh. 30 - Prob. 7TPCh. 30 - Prob. 8TPCh. 30 - Prob. 9TPCh. 30 - Prob. 10TPCh. 30 - Prob. 11TPCh. 30 - Prob. 12TPCh. 30 - Prob. 13TPCh. 30 - Prob. 14TPCh. 30 - Prob. 15TPCh. 30 - Prob. 16TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. CAUTION Why is genetic drift aptly named?
a. It causes allele frequencies to drift up or down randomly.
b. I...
Biological Science (6th Edition)
13. Figure 2.12 shows the results of Mendel’s test-cross analysis of independent assortment. In this experiment...
Genetic Analysis: An Integrated Approach (3rd Edition)
What is the probability that each of thc following pairs of parents will produce the indicated offspring? (Assu...
Campbell Biology (11th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
1. A cyclist goes around a level, circular track at constant speed. Do you agree or disagree with the following...
College Physics: A Strategic Approach (3rd Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) If the position of an electron in a membrane is measured to an accuracy of 1.00 m, what is the electron's minimum uncertainty in velocity? (b) If the electron has this velocity, what is its kinetic energy in eV? (c) What are the implications of this energy, comparing it to typical molecular binding energies?arrow_forwardThe maximum characteristic X-ray photon energy comes from the capture of a free electron into a K shell vacancy. What is this photon energy in keV for tungsten, assuming that the free electron has no initial kinetic energy?arrow_forwardMeasurements indicate that an atom remains in an excited state for an average time of 50.0 ns before making a transition to the ground state with the simultaneous emission of a 2.1-eV photon. (a) Estimate the uncertainty in the frequency of the photon. (b) What fraction of the photon's average frequency is this?arrow_forward
- 13.a. In a Compton scattering, a photon of wavelength (439) nm is collided with an electron and scattered through an angle (69)°. Calculate the energy transferred to the electron in this collision. b. A rectangular block of copper having dimensions (20.5) cm × (20.5) cm × (49) cm. If the resistivity (?) of copper is 17.2 n Ω?, determine its resistance.arrow_forwardIf the radius of a calcium ion is 0.22 nm, how much energy does it take to singly ionize it? Give your answer in electron-volts (eV) with precision 0.1 eV. Give your answer to 2 significant digits.arrow_forwardQuestion 9. While most transition metals have work functions corresponding to photon frequencies that are larger (higher) than visible light, alkali and alkaline earth metals have low-energy work functions. For example, calcium has a work function of o = 4.3419×10-19 J. (a) What is the initial state n, for the hydrogen emission lines at visible wavelengths (i.e., those with n = 2) for the lowest-energy photon that would eject an electron from calcium? %3! (b) If the colors of the visible hydrogen emission lines (n; = 3 to n = 6) are red, green, blue and %3D violet, which colors are capable of ejecting the electrons from calcium? (c) The energy of the emitted photon you identified in part (a), is not identical to the workfunction of calcium. Therefore, the electron is ejected from the metal surface with some kinetic energy (i.e., energy is conserved in the photoelectric effect process). What would the velocity of the electron ejected from calcium (in meters per second)?arrow_forward
- You measure the structure of a crystalline sample of lead using the Ka peak of Cu X-rays at 8.06 keV. Carefully explain whether or not you would expect to see a reflection at an angle of 20.4°.arrow_forwardA single electron ion MZ-1)+ with atomic number Z<84 emits a photon during an unknown electronic transition from some initial state n; to some final state nf. The photon then strikes an osmium surface, which has a work function O = 5.93 eV and causes an electron to be emitted. Many such photons create a beam of electrons (all with the same kinetic energy) that is directed at a single crystal nickel sample at normal incidence. The electrons are scattered from the crystal and it is observed that they do so with only two (2) non-zero diffraction angles (i.e., 2 different values of 0). From the DeBroglie-Bragg relation it is determined that the diffraction corresponds to a lattice spacing of a = 352.4 pm.arrow_forwardWhen an ultraviolet photon is absorbed by a molecule of DNA, the photon’s energy can be converted into vibrational energy of the molecular bonds. Excessive vibration damages the molecule by causing the bonds to break. Ultraviolet light of wavelength less than 290 nm causes significant damage to DNA; ultraviolet light of longer wavelength causes minimal damage. What is the threshold photon energy, in eV, for DNA damage?arrow_forward
- What is the transition rate for neon atoms in a He-Ne laser if the energy drop for the 632.8 nm emission is 1.96 eV and the power output is 1.0 mW.arrow_forwardA visible (violet) emission spectral line for chromium (Cr) occurs at wavelength λ = 425.435 nm. A) What is the frequency (ν) of this light?(Give correct units and answer to six significant figures.) B) What is the magnitude of the energy change associated with the emission of one mole of photons of light with this wavelength?arrow_forwardIn Millikan's oil-drop experiment, one looks at a small oil drop held motionless between two plates. Take the voltage between the plates to be 2241 V and the plate separation to be 2 cm. The oil drop (of density 0.81 g/cm3) has a diameter of 4.0 ×10-6 m. Find the charge on the drop, in terms of electron units.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Atomic Number, Atomic Mass, and the Atomic Structure | How to Pass ChemistryThe Nucleus: Crash Course Chemistry #1; Author: Crash Course;https://www.youtube.com/watch?v=FSyAehMdpyI;License: Standard YouTube License, CC-BY