College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 30, Problem 8CQ
What is a hydrogen-like atom, and how are the energies and radii of its electron orbits related to those in hydrogen?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem Seven. A football
receiver
running
straight
downfield at 5.60 m/s is 11.5 m
in front of the quarterback when
a pass is thrown downfield at an
angle of 35.0° above the
horizon.
8.) If the receiver never changes speed and the ball is caught at the same height from which it was
thrown, find the distance between the quarterback and the receiver when the catch is made.
(A) 21.3
(B) 17.8
(C) 18.8
(D) 19.9
(E) 67.5
When two bar magnets are near each other, the north pole of one of the magnets experiences what type of force from the other magnet?
1. both an attractive force and a repulsive force
2. a Coulomb force
3. only an attractive force
4. only a repulsive force
What can be said about the electric force between two charged particles?
It varies as 1/r.
It depends only on the magnitudes of the charges.
It is much, much greater than the attractive gravitational force.
It is repulsive for unlike charges.
Chapter 30 Solutions
College Physics
Ch. 30 - Name three different types of evidence for the...Ch. 30 - Explain why patterns observed in the periodic...Ch. 30 - If atoms exist, why can't we see them with visible...Ch. 30 - What two pieces of evidence allowed the first...Ch. 30 - How do the allowed orbits for electrons in atoms...Ch. 30 - How do the allowed orbits for electrons in atoms...Ch. 30 - Explain how Bohr's rule for the quantization of...Ch. 30 - What is a hydrogen-like atom, and how are the...Ch. 30 - Explain why characteristic x rays are the most...Ch. 30 - Why does the energy of characteristic x rays...
Ch. 30 - Observers at a safe distance from atmospheric test...Ch. 30 - Lasers are used to burn and read CDs. Explain why...Ch. 30 - Crystal lattices can be examined with x rays but...Ch. 30 - CT scanners do not detect details smaller than...Ch. 30 - How do the allowed orbits for electrons in atoms...Ch. 30 - Atomic and molecular spectra are discrete. What...Ch. 30 - Hydrogen gas can only absorb EM radiation that has...Ch. 30 - Lasers are used to burn and read CDs. Explain why...Ch. 30 - The coating on the inside of fluorescent light...Ch. 30 - What is the difference between fluorescence and...Ch. 30 - How can you tell that a hologram is a true...Ch. 30 - How is the de Broglie wavelength of electrons...Ch. 30 - What is the Zeeman effect, and what type of...Ch. 30 - Define the quantum numbers n,l,ml,s, and ms.Ch. 30 - For a given value of n, what are the allowed...Ch. 30 - For a given value of l, what are the allowed...Ch. 30 - List all the possible values of s and msfor an...Ch. 30 - Identify the shell, subshell, and number of...Ch. 30 - Which of the following are not allowed? State...Ch. 30 - Using the given charge-to-mass ratios for...Ch. 30 - (a) Calculate the mass of a proton using the...Ch. 30 - If someone wanted to build a scale model of the...Ch. 30 - Rutherford found the size of the nucleus to be...Ch. 30 - In Millikan's oil-drop experiment, one looks at a...Ch. 30 - (a) An aspiring physicist wants to build a scale...Ch. 30 - By calculating its wavelength, show that the first...Ch. 30 - Find the wavelength of the third line in the Lyman...Ch. 30 - Look up the values of the quantities in...Ch. 30 - Verify that the ground state energy E0 is 13.6 eV...Ch. 30 - If a hydrogen atom has its electron in the n=4...Ch. 30 - A hydrogen atom in an excited state can be ionized...Ch. 30 - Find the radius of a hydrogen atom in the n=2...Ch. 30 - Show that (13.6eV)/hc=1.097107m=R (Rydberg's...Ch. 30 - What is the smallest-wavelength line in the Balmer...Ch. 30 - Show that the entire Paschen series is in the...Ch. 30 - Do the Balmer and Lyman series overlap? To answer...Ch. 30 - (a) Which line in the Balmer series is the first...Ch. 30 - A wavelength of 4.653 m is observed in a hydrogen...Ch. 30 - A singly ionized helium ion has only one electron...Ch. 30 - A beryllium ion with a single electron (denoted...Ch. 30 - Atoms can be ionized by thermal collisions, such...Ch. 30 - Verify Equations rn=n2ZaB and...Ch. 30 - The wavelength of the four Balmer series lines for...Ch. 30 - (a) What is the shortest-wavelength x-ray...Ch. 30 - A color television tube also generates some x rays...Ch. 30 - An x ray tube has an applied voltage of 100 kV....Ch. 30 - The maximum characteristic x-ray photon energy...Ch. 30 - What are the approximate energies of the K and K...Ch. 30 - Figure 30.39 shows the energy-level diagram for...Ch. 30 - A helium-neon laser is pumped by electric...Ch. 30 - Ruby lasers have chromium atoms doped in an...Ch. 30 - (a) What energy photons can pump chromium atoms in...Ch. 30 - Some of the most powerful lasers are based on the...Ch. 30 - If an atom has an electron in the n=5 state with...Ch. 30 - An atom has an electron with m1=2. What is the...Ch. 30 - What are the possible values of m1 for an electron...Ch. 30 - What, if any, constraints does a value of ml=1...Ch. 30 - (a) Calculate the magnitude of the angular...Ch. 30 - (a) What is the magnitude of the angular momentum...Ch. 30 - Repeat Exercise 30.40 for l=3.Ch. 30 - (a) How many angles can L make with the z-axis for...Ch. 30 - What angles can the spin S of an electron make...Ch. 30 - (a) How many electrons can be in the n=4 shell?...Ch. 30 - (a) What is the minimum value of 1 for a subshell...Ch. 30 - (a) If one subshell of an atom has 9 electrons in...Ch. 30 - (a) List all possible sets of quantum numbers...Ch. 30 - Which of the following spectroscopic notations are...Ch. 30 - Which of the following spectroscopic notations are...Ch. 30 - (a) Using the Pauli exclusion principle and the...Ch. 30 - Integrated Concepts Estimate the density of a...Ch. 30 - Integrated Concepts The electric and magnetic...Ch. 30 - (a) What is the distance between the slits of a...Ch. 30 - Integrated Concepts A galaxy moving away from the...Ch. 30 - Integrated Concepts Calculate the velocity of a...Ch. 30 - Integrated Concepts In a Millikan oil-drop...Ch. 30 - Integrated Concepts What double-slit separation...Ch. 30 - Integrated Concepts In a laboratory experiment...Ch. 30 - Integrated Concepts Find the value of l, the...Ch. 30 - Integrated Concepts Particles called muons exist...Ch. 30 - Integrated Concepts Calculate the minimum amount...Ch. 30 - Integrated Concepts A carbon dioxide laser used in...Ch. 30 - Integrated Concepts Suppose an MRI scanner uses...Ch. 30 - Integrated Concepts (a) An excimer laser used for...Ch. 30 - Integrated Concepts A neighboring galaxy rotates...Ch. 30 - Integrated Concepts A pulsar is a rapidly spinning...Ch. 30 - Integrated Concepts Prove that the velocity of...Ch. 30 - Unreasonable Results (a) What voltage must be...Ch. 30 - Unreasonable Results A student in a physics...Ch. 30 - Construct Your Own Problem The solar corona is so...Ch. 30 - Construct Your Own Problem Consider the...Ch. 30 - Prob. 1TPCh. 30 - Prob. 2TPCh. 30 - Prob. 3TPCh. 30 - Prob. 4TPCh. 30 - Prob. 5TPCh. 30 - Prob. 6TPCh. 30 - Prob. 7TPCh. 30 - Prob. 8TPCh. 30 - Prob. 9TPCh. 30 - Prob. 10TPCh. 30 - Prob. 11TPCh. 30 - Prob. 12TPCh. 30 - Prob. 13TPCh. 30 - Prob. 14TPCh. 30 - Prob. 15TPCh. 30 - Prob. 16TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
A backpacker wants to carry enough fuel to heat 2.5 kg of water from 25 C to 100.0 C. If the fuel she carries p...
Introductory Chemistry (6th Edition)
How is migration based on circannual rhythms poorly suited for adaptation to global climate change?
Campbell Biology (11th Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A piece of copper originally 305mm long is pulled in tension with a stress of 276MPa. If the deformation is elastic, what will be the resultant elongation. E for copper is 110Gpaarrow_forwardPlease solve and answer the problem correctly please. Be sure to give explanations on each step and write neatly please. Thank you!!arrow_forwardIn the figures, the masses are hung from an elevator ceiling. Assume the velocity of the elevator is constant. Find the tensions in the ropes (in N) for each case. Note that 0₁ = 35.0°, 0₂ = 55.0°, 03 = 60.0°, m₁ = 3.00 kg, and m2 = 7.00 kg. (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.) (a) Τι WY NY MY T3 e₁ T₁ = N = N = N (b) 18 Τι = Τι T3 = || || || = T T Ts m₂ N N N 02 T₂ T3 m₁arrow_forward
- You are working with a movie director and investigating a scene with a cowboy sliding off a tree limb and falling onto the saddle of a moving horse. The distance of the fall is several meters, and the calculation shows a high probability of injury to the cowboy from the stunt. Let's look at a simpler situation. Suppose the director asks you to have the cowboy step off a platform 2.55 m off the ground and land on his feet on the ground. The cowboy keeps his legs straight as he falls, but then bends at the knees as soon as he touches the ground. This allows the center of mass of his body to move through a distance of 0.660 m before his body comes to rest. (Center of mass will be formally defined in Linear Momentum and Collisions.) You assume this motion to be under constant acceleration of the center of mass of his body. To assess the degree of danger to the cowboy in this stunt, you wish to calculate the average force upward on his body from the ground, as a multiple of the cowboy's…arrow_forwardA box of mass m = 2.00 kg is released from rest at the top of an inclined plane as seen in the figure. The box starts out at height h =0.200 m above the top of the table, the table height is H = 2.00 m, and 0 = 41.0°. H m (a) What is the acceleration (in m/s²) of the box while it slides down the incline? m/s² (b) What is the speed (in m/s) of the box when it leaves the incline? m/s (c) At what horizontal distance (in m) from the end of the table will the box hit the ground? m (d) How long (in s) from when the box is released does it hit the ground? S (e) Does the box's mass affect any of your above answers? Yes Noarrow_forward(a) A sphere made of rubber has a density of 0.940 g/cm³ and a radius of 7.00 cm. It falls through air of density 1.20 kg/m³ and has a drag coefficient of 0.500. What is its terminal speed (in m/s)? m/s (b) From what height (in m) would the sphere have to be dropped to reach this speed if it fell without air resistance? marrow_forward
- The systems shown below are in equilibrium. If the spring scales are calibrated in newtons, what do they read? Ignore the masses of the pulleys and strings and assume the pulleys and the incline are frictionless. (Let m = 2.19 kg and € = 29.0°.) scale in (a) N N scale in (b) scale in (c) N scale in (d) N a C m m m m m b d m Ꮎarrow_forwardAn elevator car has two equal masses attached to the ceiling as shown. (Assume m = 3.10 kg.) m m T₁ T2 (a) The elevator ascends with an acceleration of magnitude 2.00 m/s². What are the tensions in the two strings? (Enter your answers in N.) = N T₁ Τι = N (b) The maximum tension the strings can withstand is 78.8 N. What is the maximum acceleration of the elevator so that a string does not break? (Enter the magnitude in m/s².) m/s²arrow_forward(a) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.85 x 100 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.20 x 10-5 T? 4.27e3 m/s (b) What would the radius (in m) of the path be if the proton had the same speed as the electron? 7.85e6 x m (c) What would the radius (in m) be if the proton had the same kinetic energy as the electron? 195.38 x m (d) What would the radius (in m) be if the proton had the same momentum as the electron? 3.7205 marrow_forward
- ! Required information The block shown is made of a magnesium alloy, for which E = 45 GPa and v = 0.35. Know that σx = -185 MPa. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. 25 mm B D 40 mm 100 mm Determine the magnitude of Oy for which the change in the height of the block will be zero. The magnitude of Oy is MPa.arrow_forwardThe rigid bar ABC is supported by two links, AD and BE, of uniform 37.5 × 6-mm rectangular cross section and made of a mild steel that is assumed to be elastoplastic with E = 200 GPa and σy= 250 MPa. The magnitude of the force Q applied at B is gradually increased from zero to 265 kN and a = 0.640 m. 1.7 m 1 m D A B 2.64 m E Determine the value of the normal stress in each link. The value of the normal stress in link AD is The value of the normal stress in link BE is 250 MPa. MPa.arrow_forwardTwo tempered-steel bars, each 16 in. thick, are bonded to a ½ -in. mild-steel bar. This composite bar is subjected as shown to a centric axial load of magnitude P. Both steels are elastoplastic with E= 29 × 106 psi and with yield strengths equal to 100 ksi and 50 ksi, respectively, for the tempered and mild steel. The load P is gradually increased from zero until the deformation of the bar reaches a maximum value dm = 0.04 in. and then decreased back to zero. Take L = 15 in. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. 2.0 in. in. 3 in. 3 16 in. Determine the maximum stress in the tempered-steel bars. The maximum stress in the tempered-steel bars is ksi.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning


Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax