College Physics
College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
bartleby

Concept explainers

Question
Book Icon
Chapter 30, Problem 4TP
To determine

The energies of the first five excited states above the ground level for hydrogen atoms.

Expert Solution & Answer
Check Mark

Answer to Problem 4TP

The energies of the first five excited states above the ground level for hydrogen atoms are 3.396eV, 1.507eV, 0.848eV, 0.54eV, and 0.372eV.

Explanation of Solution

Given:

The wavelength of first photon is λ1=121.6nm.

The wavelength of second photon is λ2=102.6nm.

The wavelength of third photon is λ3=97.3nm.

The wavelength of fourth photon is λ4=95.0nm.

The wavelength of five photon is λ5=93.8nm.

Formula used:

The energy of the first excited state is given by

  E1=E0+hcλ1

The energy of the second excited state is given by

  E2=E0+hcλ2

The energy of the third excited state is given by

  E3=E0+hcλ3

The energy of the fourth excited state is given by

  E4=E0+hcλ4

The energy of the fifth excited state is given by

  E5=E0+hcλ5

Calculation:

The energy of the first excited state is calculated as follows:

  E1=E0+hcλ1=13.6eV+( 4.1357× 10 15 eVs)( 3× 10 17 nm/s )121.6nm=13.6eV+12.407× 102eVnm121.6nm=3.396eV

The energy of the second excited state is calculated as follows:

  E2=E0+hcλ2=13.6eV+( 4.1357× 10 15 eVs)( 3× 10 17 nm/s )102.6nm=13.6eV+12.407× 102eVnm102.6nm=1.507eV

The energy of the third excited state is calculated as follows:

  E3=E0+hcλ3=13.6eV+( 4.1357× 10 15 eVs)( 3× 10 17 nm/s )97.3nm=13.6eV+12.407× 102eVnm97.3nm=0.848eV

The energy of the fourth excited state is calculated as follows:

  E4=E0+hcλ4=13.6eV+( 4.1357× 10 15 eVs)( 3× 10 17 nm/s )95.0nm=13.6eV+12.407× 102eVnm95.0nm=0.54eV

The energy of the fifth excited state is given by

  E5=E0+hcλ5=13.6eV+( 4.1357× 10 15 eVs)( 3× 10 17 nm/s )93.8nm=13.6eV+12.407× 102eVnm93.8nm=0.372eV

Conclusion:

The energies of the first five excited states above the ground level for hydrogen atoms are 3.396eV, 1.507eV, 0.848eV, 0.54eV, and 0.372eV.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No Chatgpt please will upvote h
Helicobacter pylori (H. pylori) is a helically-shaped bacterium that is usually found in the stomach. It burrows through the gastric mucous lining to establish an infection in the stomach's epithelial cells (see photo). Approximately 90% of the people infected with H. pylori will never experience symptoms. Others may develop peptic ulcers and show symptoms of chronic gastritis. The method of motility of H. pylori is a prokaryotic flagellum attached to the back of the bacterium that rigidly rotates like a propeller on a ship. The flagellum is composed of proteins and is approximately 40.0 nm in diameter and can reach rotation speeds as high as 1.50 x 103 rpm. If the speed of the bacterium is 10.0 μm/s, how far has it moved in the time it takes the flagellum to rotate through an angular displacement of 5.00 * 10² rad? Zina Deretsky, National Science Foundation/Flickr H. PYLORI CROSSING MUCUS LAYER OF STOMACH H.pylori Gastric Epithelial mucin cells gel Number i 318 Units um H.pylori…
T1. Calculate what is the received frequency when the car drives away from the radar antenna at a speed v of a) 1 m/s ( = 3.6 km/h), b) 10 m/s ( = 36 km/h), c) 30 m /s ( = 108 km/h) . The radar transmission frequency f is 24.125 GHz = 24.125*10^9 Hz, about 24 GHz. Speed ​​of light 2.998 *10^8 m/s.

Chapter 30 Solutions

College Physics

Ch. 30 - Observers at a safe distance from atmospheric test...Ch. 30 - Lasers are used to burn and read CDs. Explain why...Ch. 30 - Crystal lattices can be examined with x rays but...Ch. 30 - CT scanners do not detect details smaller than...Ch. 30 - How do the allowed orbits for electrons in atoms...Ch. 30 - Atomic and molecular spectra are discrete. What...Ch. 30 - Hydrogen gas can only absorb EM radiation that has...Ch. 30 - Lasers are used to burn and read CDs. Explain why...Ch. 30 - The coating on the inside of fluorescent light...Ch. 30 - What is the difference between fluorescence and...Ch. 30 - How can you tell that a hologram is a true...Ch. 30 - How is the de Broglie wavelength of electrons...Ch. 30 - What is the Zeeman effect, and what type of...Ch. 30 - Define the quantum numbers n,l,ml,s, and ms.Ch. 30 - For a given value of n, what are the allowed...Ch. 30 - For a given value of l, what are the allowed...Ch. 30 - List all the possible values of s and msfor an...Ch. 30 - Identify the shell, subshell, and number of...Ch. 30 - Which of the following are not allowed? State...Ch. 30 - Using the given charge-to-mass ratios for...Ch. 30 - (a) Calculate the mass of a proton using the...Ch. 30 - If someone wanted to build a scale model of the...Ch. 30 - Rutherford found the size of the nucleus to be...Ch. 30 - In Millikan's oil-drop experiment, one looks at a...Ch. 30 - (a) An aspiring physicist wants to build a scale...Ch. 30 - By calculating its wavelength, show that the first...Ch. 30 - Find the wavelength of the third line in the Lyman...Ch. 30 - Look up the values of the quantities in...Ch. 30 - Verify that the ground state energy E0 is 13.6 eV...Ch. 30 - If a hydrogen atom has its electron in the n=4...Ch. 30 - A hydrogen atom in an excited state can be ionized...Ch. 30 - Find the radius of a hydrogen atom in the n=2...Ch. 30 - Show that (13.6eV)/hc=1.097107m=R (Rydberg's...Ch. 30 - What is the smallest-wavelength line in the Balmer...Ch. 30 - Show that the entire Paschen series is in the...Ch. 30 - Do the Balmer and Lyman series overlap? To answer...Ch. 30 - (a) Which line in the Balmer series is the first...Ch. 30 - A wavelength of 4.653 m is observed in a hydrogen...Ch. 30 - A singly ionized helium ion has only one electron...Ch. 30 - A beryllium ion with a single electron (denoted...Ch. 30 - Atoms can be ionized by thermal collisions, such...Ch. 30 - Verify Equations rn=n2ZaB and...Ch. 30 - The wavelength of the four Balmer series lines for...Ch. 30 - (a) What is the shortest-wavelength x-ray...Ch. 30 - A color television tube also generates some x rays...Ch. 30 - An x ray tube has an applied voltage of 100 kV....Ch. 30 - The maximum characteristic x-ray photon energy...Ch. 30 - What are the approximate energies of the K and K...Ch. 30 - Figure 30.39 shows the energy-level diagram for...Ch. 30 - A helium-neon laser is pumped by electric...Ch. 30 - Ruby lasers have chromium atoms doped in an...Ch. 30 - (a) What energy photons can pump chromium atoms in...Ch. 30 - Some of the most powerful lasers are based on the...Ch. 30 - If an atom has an electron in the n=5 state with...Ch. 30 - An atom has an electron with m1=2. What is the...Ch. 30 - What are the possible values of m1 for an electron...Ch. 30 - What, if any, constraints does a value of ml=1...Ch. 30 - (a) Calculate the magnitude of the angular...Ch. 30 - (a) What is the magnitude of the angular momentum...Ch. 30 - Repeat Exercise 30.40 for l=3.Ch. 30 - (a) How many angles can L make with the z-axis for...Ch. 30 - What angles can the spin S of an electron make...Ch. 30 - (a) How many electrons can be in the n=4 shell?...Ch. 30 - (a) What is the minimum value of 1 for a subshell...Ch. 30 - (a) If one subshell of an atom has 9 electrons in...Ch. 30 - (a) List all possible sets of quantum numbers...Ch. 30 - Which of the following spectroscopic notations are...Ch. 30 - Which of the following spectroscopic notations are...Ch. 30 - (a) Using the Pauli exclusion principle and the...Ch. 30 - Integrated Concepts Estimate the density of a...Ch. 30 - Integrated Concepts The electric and magnetic...Ch. 30 - (a) What is the distance between the slits of a...Ch. 30 - Integrated Concepts A galaxy moving away from the...Ch. 30 - Integrated Concepts Calculate the velocity of a...Ch. 30 - Integrated Concepts In a Millikan oil-drop...Ch. 30 - Integrated Concepts What double-slit separation...Ch. 30 - Integrated Concepts In a laboratory experiment...Ch. 30 - Integrated Concepts Find the value of l, the...Ch. 30 - Integrated Concepts Particles called muons exist...Ch. 30 - Integrated Concepts Calculate the minimum amount...Ch. 30 - Integrated Concepts A carbon dioxide laser used in...Ch. 30 - Integrated Concepts Suppose an MRI scanner uses...Ch. 30 - Integrated Concepts (a) An excimer laser used for...Ch. 30 - Integrated Concepts A neighboring galaxy rotates...Ch. 30 - Integrated Concepts A pulsar is a rapidly spinning...Ch. 30 - Integrated Concepts Prove that the velocity of...Ch. 30 - Unreasonable Results (a) What voltage must be...Ch. 30 - Unreasonable Results A student in a physics...Ch. 30 - Construct Your Own Problem The solar corona is so...Ch. 30 - Construct Your Own Problem Consider the...Ch. 30 - Prob. 1TPCh. 30 - Prob. 2TPCh. 30 - Prob. 3TPCh. 30 - Prob. 4TPCh. 30 - Prob. 5TPCh. 30 - Prob. 6TPCh. 30 - Prob. 7TPCh. 30 - Prob. 8TPCh. 30 - Prob. 9TPCh. 30 - Prob. 10TPCh. 30 - Prob. 11TPCh. 30 - Prob. 12TPCh. 30 - Prob. 13TPCh. 30 - Prob. 14TPCh. 30 - Prob. 15TPCh. 30 - Prob. 16TP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning