Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
4th Edition
ISBN: 9780134564234
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 30, Problem 18EAP
FIGURE EX30.18 shows the current as a function of time through a
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A long solenoid has a radius of 4 cm and has 800 turns/m. If the current in the solenoid is increasing at the rate of 14.2 A/s, what is the
magnitude of the induced electric field at a point 2.2 cm from the axis of the solenoid?
O a. 1141.11 µV/m
O b. 518.30 µV/m
O c. 127.80 µV/m
O d. 213.00 µV/m
O e. 156.91 µV/m
A long solenoid has a radius of 4 cm and
has 800 turns/m. If the current in the
solenoid is increasing at the rate of 6 A/s,
what is the magnitude of the induced
electric field at a point 2.2 cm from the axis
of the solenoid?
a. 219.00 μν/m
b. 90.00 μν/m
Ο c. 66.30 μν/m
d. 54.00 µV/m
e. 482.16 µV/m
I need the answer as soon as possible
Chapter 30 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Ch. 30 - Prob. 1CQCh. 30 - You want to insert a loop of copper wire between...Ch. 30 - A vertical, rectangular loop of copper wire is...Ch. 30 - Does the loop of wire in FIGURE Q30.4 have a...Ch. 30 - s5. The two loops of wire in FIGURE Q30.5 are...Ch. 30 - FIGURE Q30.6 shows a bar magnet being pushed...Ch. 30 - A bar magnet is pushed toward a loop of wire as...Ch. 30 - FIGURE Q30.8 shows a bar magnet. a coil of wire,...Ch. 30 - Prob. 9CQCh. 30 - An inductor with a 2.0 A current stores energy. At...
Ch. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Rank in order, from largest to smallest, the three...Ch. 30 - For the circuit of FIGURE Q30.14: a. What is the...Ch. 30 - The earth’s magnetic field strength is 5.0105T ....Ch. 30 - A potential difference of 0.050 V is developed...Ch. 30 - A 10 -cm-long wire is pulled along a U-shaped...Ch. 30 - What is the magnetic flux through the loop shown...Ch. 30 - FIGURE EX30.5 shows a 10cm10cm square bent at a 90...Ch. 30 - Prob. 6EAPCh. 30 - Prob. 7EAPCh. 30 - FIGURE EX30.8 shows a 2.0 -cm-diameter solenoid...Ch. 30 - Prob. 9EAPCh. 30 - 10. A solenoid is wound as shown in FIGURE...Ch. 30 - 11. The metal equilateral triangle in FIGURE...Ch. 30 - The current in the solenoid of FIGURE EX3O.12 is...Ch. 30 - The loop in FIGURE EX30.13 is being pushed into...Ch. 30 - FIGURE EX30.14 shows a 10-cm-diameter loop in...Ch. 30 - Prob. 15EAPCh. 30 - 16. A -turn coil of wire cm in diameter is in a...Ch. 30 - A 5.0 -cm-diameter coil has 20 turns and a...Ch. 30 - FIGURE EX30.18 shows the current as a function of...Ch. 30 - The magnetic field in FIGURE EX30.19 is decreasing...Ch. 30 - The magnetic field inside a -cm-diameter solenoid...Ch. 30 - Scientists studying an anomalous magnetic field...Ch. 30 - Prob. 22EAPCh. 30 - Prob. 23EAPCh. 30 - Prob. 24EAPCh. 30 - Prob. 25EAPCh. 30 - Prob. 26EAPCh. 30 - How much energy is stored in a -cm-diameter,...Ch. 30 - MRI (magnetic resonance imaging) is a medical...Ch. 30 - Prob. 29EAPCh. 30 - Prob. 30EAPCh. 30 - Prob. 31EAPCh. 30 - Prob. 32EAPCh. 30 - Prob. 33EAPCh. 30 - Prob. 34EAPCh. 30 - At t=0 s, the current in the circuit in FIGURE...Ch. 30 - The switch in FIGURE EX3O.36 has been open for a...Ch. 30 - Prob. 37EAPCh. 30 - Prob. 38EAPCh. 30 - Prob. 39EAPCh. 30 - Prob. 40EAPCh. 30 - A 10cm10cm square loop lies in the xy-plane. The...Ch. 30 - A spherical balloon with a volume of L is in a mT...Ch. 30 - Prob. 43EAPCh. 30 - Prob. 44EAPCh. 30 - Prob. 45EAPCh. 30 - FIGURE P30.46 shows a 4.0-cm-diameter loop with...Ch. 30 - Prob. 47EAPCh. 30 - Prob. 48EAPCh. 30 - Prob. 49EAPCh. 30 - Prob. 50EAPCh. 30 - Prob. 51EAPCh. 30 - Prob. 52EAPCh. 30 - Prob. 53EAPCh. 30 - Prob. 54EAPCh. 30 - Prob. 55EAPCh. 30 - Your camping buddy has an idea for a light to go...Ch. 30 - 57. The -wide, zero-resistance slide wire shown...Ch. 30 - ]58. You’ve decided to make the magnetic...Ch. 30 - FIGURE P30.59 shows a U-shaped conducting rail...Ch. 30 - Prob. 60EAPCh. 30 - Prob. 61EAPCh. 30 - Prob. 62EAPCh. 30 - Equation 30.26 is an expression for the induced...Ch. 30 - Prob. 64EAPCh. 30 - One possible concern with MRI (see Exercise 28) is...Ch. 30 - FIGURE P30.66 shows the current through a 10mH...Ch. 30 - Prob. 67EAPCh. 30 - Prob. 68EAPCh. 30 - Prob. 69EAPCh. 30 - Prob. 70EAPCh. 30 - An LC circuit is built with a inductor and an...Ch. 30 - Prob. 72EAPCh. 30 - For your final exam in electronics, you’re asked...Ch. 30 - The inductor in FIGURE P30.74 is a -cm-long, -cm-...Ch. 30 - The capacitor in FIGURE P30.75 is initially...Ch. 30 - The switch in FIGURE P30.76 has been open for a...Ch. 30 - 77. The switch in FIGURE P30.77 has been open for...Ch. 30 - Prob. 78EAPCh. 30 - Prob. 79EAPCh. 30 - Prob. 80EAPCh. 30 - In recent years it has been possible to buy a 1.0F...Ch. 30 - Prob. 82EAPCh. 30 - Prob. 83EAPCh. 30 - Prob. 84EAPCh. 30 - A 2.0 -cm-diameter solenoid is wrapped with 1000...Ch. 30 - High-frequency signals are often transmitted along...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) If the emf of a coil rotating in a magnetic field is zero at t = 0, and increases to its first peak at t = 0.100 ms, what is the angular velocity of the coil? (b) At what time will its next maximum occur? (c) What is the period of the output? (d) When is the output first one-fourth at its maximum? (e) When is it next one-fourth at its maximum?arrow_forwardThe square armature coil of an alternating current generator has 200 turns and is 20.0 cm on side. When it rotates at 3600 rpm, its peak output voltage is 120 V. (a) Wliat is the frequency' of the output voltage? (b) What is the strength of the magnetic field in which the coil is turning?arrow_forwardThe magnetic field through a square loop of wire with sides of length 3.00 cm changes with time as shown in Figure P32.8, where the sign indicates the direction of the field relative to the axis of the loop. Plot the emf induced in the loop versus time. FIGURE P32.8arrow_forward
- A long solenoid with 10 turns per centimeter is placed inside a copper ring such that both objects hove the same central axis. The radius of the ring is 10.0 cm. and the radius of the solenoid is 5.0 cm. (a) What is the emf induced in the ring when the current 2 through the solenoid is 5.0 A and changing at a rate of 100 A/s? (b) What is the emf induced in the ring when 1=2.0A and. dI/dt=100A/s ? (c) What is the electric field inside the ring for these two cases? id: Suppose the ring is moved so that its central axis and the central axis of the solenoid are still parallel but no longer coincide. (You should assume that the solenoid is still inside die ring.) New what is the emf induced in the ring? (el Can you calculate the electric field in die ring as you did in part (c)?arrow_forwardA 2100-turn solenoid is 1.5 m long and 15 cm in diameter. The solenoid current is increasing at 1.1 kA/s. A. Find the current in a 10cm-diameter wire loop with resistance 6.0 Ω lying inside the solenoid and perpendicular to the solenoid axis. B. Repeat for a similarly oriented 25cm-diameter loop with the same resistance, lying entirely outside the solenoid.arrow_forwardThe 10 cm diameter permanent magnet pole face produces 4mWb of flux. A 50 cm long conductor cuts across the flux at 100 m/s. What is the voltage induced at both ends of the conductor?arrow_forward
- A TMS (transcranial magnetic stimulation) device creates very rapidly changing magnetic fields. The field near a typical pulsed-field machine rises from 0 T to 2.5 T in 200 μs. Suppose a technician holds his hand near the device so that the axis of his 1.9-cm-diameter wedding band is parallel to the field. What emf is induced in the ring as the field changes? If the band is made of a gold alloy with resistivity 6.2×10−8Ω⋅m and has a cross-section area 4.5 mm2 , what is the induced current?arrow_forwardA long solenoid has a radius of 4 cm and has 800 turns/m. If the current in the solenoid is increasing at the rate of 25.3 A/s, what is the magnitude of the induced electric field at a point 2.2 cm from the axis of the solenoid? O a. 279.56 µV/m Ο b 379.50 μν /m Ο c227.70 μν/m O d. 923.45 µV/m O e. 2033.11 µV/marrow_forwardSuppose the long solenoid is wound with 800 turns per meter and the current in its windings is increasing at the rate of 120 A/s. The cross-sectional area of the solenoid is 7.0 cm2. a. Find the magnitude of the induced emf in the wire loop outside the solenoid. b. Find the magnitude of the induced electric field within the loop if its radius is 3.0 cm.arrow_forward
- The magnetic field inside of a very long solenoid is B = 0.024 T when the current į = 2.3 A. The radius of the cross-sectional area of the solenoid is R= 0.025 m. a. Determine the energy density due to magnetic field inside of the solenoid and the energy stored in the solenoid per 1.0 m of length of the solenoid.? b. What is the inductance of the solenoid per 1.0 m of length? c. If the magnetic field in the solenoid starts to decrease at the rate of 0.100 T/s, what is the magnitude of the induced electric field at the radial distance r= 0.010 m from the axis of the solenoid?arrow_forwardA long solenoid has a radius of 4 cm and has 800 turns/m. If the current in the solenoid is increasing at the rate of 4.4 A/s, what is the magnitude of the induced electric field at a point 2.2 cm from the axis of the solenoid? a. 48.62 µV/m Ο b. 39.60 μν/m O c. 160.60 µV/m d. 353.58 µV/m Ο e. 66.00 μν /marrow_forwardSuppose a magnetic field B(t) oscillates with frequency w. A circular loop of copper lies perpendicular to the magnetic field. The radius of the circular loop is r. a. Write down an expression for the magnetic field as a function of time. Determine the induced emf & in the loop of wire and use this to calculate the current generated in the loop as a function of time. b. What is the power dissipation in the wire as a function to time? Make a sketch of this function. What is the average power Pave dissipation in the wire? Hint: what is the average value of the function you sketched? C. Recall that power is a rate of energy transfer, and that power dissipated by a resistor leads to a change in the thermal energy of the material (in this case the copper wire). We can relate a change in thermal energy to a change in temperature by AT where M is the total mass and c ΔΕth Mc is the specific heat capacity of the material (see page 526 for details). Find an expression for a dT - differential…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY